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Rational ,c Suboptimal Compensators for Continuous-Time Systems
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Abstract

The persistent disturbance rejection problem (XC' Optimal Control) for
continuous time-systems leads to non-rational compensators, even for SISO
systems [1-3]. As noted in [2], the difficulty of physically implementing these
controllers suggest that the most significant applications of the continuous
time C1 theory is to furnish bounds for the achievable performance of discrete-
time controllers. However, at the present time, there are no theoretical results
relating the optimal 1P norm of the discrete time system with the actual
performance obtained when the controller is used in the continuous-time
system. In this paper we use the theory of positively invariant sets to provide
a design procedure, based upon the use of the discrete Euler approximating
system, for suboptimal rational C' controllers. The main results of the paper
show that i) the C' norm of the resulting continuous-time system is bounded
above by the 11 norm of the discrete-time counterpart and ii) the proposed
rational compensators yield C' cost arbitrarily close to the optimum, even in
caes where the design procedure proposed in [2] fails due to the existence of
plant zeros on the stability boundary.

1. Introduction
A large number of control problems involve designing a controller

capable of stabilizing a given linear time invariant system while mini-
m.izing the worst case response to some exogenous disturbances. This
problem is relevant for instance for disturbance rejection, tracking and
robustness to model uncertainty (see [2] and references therein). When
the exogenous disturbances are modeled as bounded energy signals
and performance is measured in terms of the energy of the output, this
problem leads to the well known 7X,0 theory. The case where the signals
involved are persistent bounded signals leads to the C1 optimal control
theory, formulated and further explored by Vidyasagar [1, 3] and solved
by Dahleh and Pearson both in the discrete [4] and continuous time
[2] cases.

The C' theory is appealing because it directly incorporates time-
domain specifications. Moreover, it furnishes a complete solution to
the robust performance problem [5]. However, in contrast with the
discrete time 11 theory, the solution to the continuous-time C1 optimal
control problem leads to non-rational compensators, even for SISO
systems. As noted in [2], the difficulty of physically implementing
these controllers suggest that the most significant applications of the
continuous time CV theory is to provide bounds for the achievable
performance of discrete-time controllers. In [6] a controller for a
constrained continuous-time system was designed by first discretizing
the system and then using 11 techniques. However, at the present
time, there is no theory relating the optimal value of the 11 norm of
the discretized system with the actual performance obtained when the
discrete-time controler is implemented in the original continuous-time
system.

In this paper we use the theory of positively invariant sets to
provide a design procedure, based upon the use of the discrete Euler
approximating system (EAS), for suboptimal rational C' controllers.
The main results of the paper show that i) the C1 norm of the
resulting continuous-time system is bounded above by the 11 norm
of the discrete-time counterpart and ii) the optimal C' system can be
approximated arbitrarily close by a rational compensator related to
the optimal 1} compensator for the EAS.
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The paper is organized as follows: In section II we introduce the
notation to be used and we restate the main results concerning the C1
problem. In section III we introduce the discrete time Euler approx-
imating system and we propose a method for designing suboptimal
rational controllers, yielding cost arbitrarily close to the optimal C'
cost, based upon the use of the optimal 11 theory for the EAS. In section
IV we present a simple design example and we compare our controller
to the optimal C' controller. Finally, in section V, we summarize our
results.

2. Preliminaries

2.1 Notation

By C,, we denote the Lebesgue space of complex valued transfer
matrices which are essentially bounded on the imaginary axis with
norm JiT(z)Ik4,am&x(T(jw).)XO, denotes the set of stable complex
matrices G(s) E CLn, i.e analytic in R(s) > 0. R74,, denotes the
subset of X2formed by real rational transfer matrices. 14 denotes
the space of bounded real sequences {ek} equipped with the norm
lel1.-, sup lekI. 1' denotes the space of real sequences, equipped with

k

the norm 1q1 = r PIq < oo. CP(R+ ) denotes the space of measurable
k-0

functions f(t) equipped with the norm: lIf Ilp If(t)IPdt&) < 00.

RE' denotes the subset of Cl formed by matrices with real rational
Laplace Transform. Given a function q(t) E C' we will denote its
Laplace transform by Q(s) E ZOO. Throughout the paper we will use
packed notation to represent state-space realizations, i.e.

G(s) = C(sI-A)-'B+D(DJeA)

Finally, given two transfer matrices T = TlI T,,) and Q with

appropriate dimensions, the lower linear fractional transfornation is
defined as:

(T, Q)-"Tl + T,2Q(I - T2Q) 21

2.2 The C' Optimal Control Problem

Consider the system represented by the block diagram 1, where S
represents the system to be contro}led; the scalar signals w E LCO and u
represent an exogenous disturbance and the control action respectively;
and where ( and y represent the output subject to performance con-
straints and the measurements available to the controller respectively.
As usual we will assume, without loss of generality, that any weights
have been absorbed in the plant S. Then, the C' optimal control
problem can be stated as: Given the system (S) find an internally
stabilizing controller

u(s) = K(s)y(s) (C)
such that the worst case (over the set of all w(t) E-C, llWllco :5 l)
maximum amplitude of the performance output z(t) is minimized.

2.3 Problem Transformation

Assume that the system S has the following state-space realiza-
tion:

A 1, B2
C, Di, D12
C, D21 D22

(S)
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Fig. 1. The Generalized Plant

where the pairs (A, B2) and (C2, A) are stabilizable and detectable
respectively. It is well known (see for instance [7]) that the set of all
internally stabilizing controHers can be parametrized in terms of a free
parameter Q E H.o as:

K =.F1(J,Q) (1)
where J has the following state-space realization:

(A + B,2F + Liz,2 ± £L'22 -'i-U2± -r 'wna2&-M
F 0O Rb (J)

-R,(C2 + D22 F) Re -RcD22Rb

u

Figure 2. Parametrization of all Stabilizing Controllers

where F and L are selected such that A + B,F and A + LCi2 are
stable and Rb and. R, are free non-singular matrices than can be used,
for instance, to obtain an inner-outer factorization. By using this
parametrization, the closed-loop transfer function T(W can be written
as:

T(W = ,(T, Q) = Til + T,2QT21 (2)

where Ti E RflO and where T has the following state-space realization:

AF -B2F Bi B2R\
0 AL B, +LD21 0

2f C +D12+F -D F D1l D12Rb
0 RC2 RCD21 0

AF A + B2F
AL =A+ LC2

For the SISO case, equation (2) reduces to:

TCw(s) = TI (s) + T2(s)Q(s) (4)

where T2(s) = T12(s)T2,(s). Finally, assume that the following
conditions hold:

Al) D12 has full column rank and D21 has full row rank.

A2) (A-iwCw 2) has fullcolumn rank for all w

A3) (A -jwI f') has full row rank for all w.

These assumptions guarantee that the problem is well-posed: (Al)
guarantees that T12 and T21 have full rank at infinity, while (A2) and
(A3) rule-out the existence of zeros on the jw-axis. By using this
parametrization the C1 control problem can be now precisely stated as
solving;

r=iIfITi+ Tz * Qlll
where * denotes convolution and where T2(s) does not have zeros on
the jf-axis.
* Theorem 1: Dahleh and Pearson, [2]Let T2(s) have n distinct zeros
Zk in the open right-half plane and no zeros on the jw-axis. Then:

p inf lIT1 + T2 * QlllKstab
n n

=max Vai Re{Ti(zi)} + ai+nlIm{TTi(z}I
}t=l it=1

subject to:
n n

EciiRe{re-t} + Zai+nIm{ezt}I < 1 Vt E 1z
i=l i=1

Furthermore, the optimal error 0 has the following form:
m

:=EOi6(t - ti), ti E R+, m finite
i=O

iElOi
i=O

(5)

(6)

(7)

and satisfies the interpolation condition:
m

$(ZkZ)4r EtT(z k 1, ... ,n
.=o

Remark 1: From (7) it foHows that the optimal Q, and hence the
optimal compensator K, have non-rational Laplace transforms.

2.4 Existence of Suboptimal Rational Controllers

In this section we consider the problem of approximating the
optimal cost p0 with controllers in RC'. First note that, without
loss of generality,we can assume tk=(k - 1)T, T > 07k1,...,n.
Indeed, from Theorem 9 in [2] it follows that, given 6 > 0, we can take
T small enough and Qt such that the corresponding cost p satisfies
p° <p <.0(1 +6). Define:

fe(t)= { 1 t E [ti , t. + ;0,otherwise.
m

f (t) =E f, Oi
i=O

It is immediate that ft: E and, for ec T,
lif'lli= sup lIf *vi= 114II

vEC,flvf=l
Moreover, it is easily shown that for e small enough there exist 4f such

that f(t) = 'E 44ft(t) satisfies the interpolation constraints:
i=O

F(Zk) = Tl(Zk) k = , .n
and such that Of -- ai E - 0. Finaly, since the set of functions
with rational Laplace transfer functions is dense in LI [8] it can be
shown (see Appendix A) that given t7 > 0 small enough, there exist a
function fl(t) E RL' such that Ilfr(t) f_(t)lI, < 77 and such that fr(t)
satisfies the interpolation constraints. It follows that the suboptimal
error fr(t) can then be achieved by the stabilizing rational compensator
Q(s) = F'F(sT(X These results are summarized in the foUowng
lemma:

* Lemma 1: Suppose that the C' optimal control problem has a (non
rational) solution with optimal cost ,u. Then, for any Mr > po there
exist a suboptimal internally stabilizing compensator Kr E RC' such
that the resulting closed loop transfer function satisfies IITc,lIj < t.
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3. Problem Solution
Although Lemma 1 guarantees the existence of a suboptimal

rational compensator, the proof is not constructive. In this section we
address the issue of finding a suboptimal rational controller. To that
effect we introduce the concepts of the Euler Approximating System
(EAS) and of positively invariant sets [9].

3.1 Definitions

* Deft 1: Consider the continuous time system (S). Then, the Euler
Approximating System is defined as the following discrete time system:

I+rA rBI rB2
Cl D1l D12 (EAS)
C2 D21 D22

where r > 0.

* Def. 2: Consider the followinig system:

i(t) = Ax(t) + Bv(t) (8)

where x E Rn and u(t) E fl c Rn'. A set S c Rn is a positively
invariant set of (8) if for any initial condition x,, E S and for any
v(t) the corresponding trajectory x(t,xo,v(t)) E S for all t. A similar
definition holds for the case of discrete-time systems.

3.2 Proposed Design Method

In this section we introduce a method for finding suboptimal
rational controllers yielding cost arbitrarily close to the optimal. An
additional advantage of this method is that it can be used to remove
the ill-posedness arising from the existence of zeros on the jw-axis.
* Theorem 2: Consider the system:

z = Ax + Bmv
I = Cl: + Dllv (9)

Assume that the corresponding (EAS):

zk+l = (I + 7A)zk + rBlvk (10)
Zk = Clxk + DllVk

is asymptotically stable and such that:

1IHEAS)II1 = sup lIkllco = AE(r)zu i ,H c

S.=O

Then the system (9) is asymptotically stable and such that:

1IT11 =_ SUp INi(t)IjooMcS ME(T).WC-4 , JIV1151

Conversely, if (9) is asymptotically stable and lljTsIIj-Mc then for all
M> p,c there exists r* > 0 such that for all 0 <cr < r* the EAS (9) is
asymptotically stable and such that IIT1A)ll1 c

Proof: The proof of the Theorem is given in Appendix B.

* Theorem 3: Consider a strictly decreasing sequence,r - 0, and
the corresponding EAS. Let Ai, = inf IIT(EAS)11 denote the

Kstat biLizing
optimal Xl cost for the closed-loop system. Then the sequence pi is
non-increasing and such that Mt p°, the optimal £1 cost.

Proof: The proof will be split into two parts. First we show that
the sequence pi is non-increasing. To this aim, let SE(r) denote the
closure of the origin-reachable domain of (10) with the bounded input
lvl < 1 and define:

Z(e)-{z: IIC1: + Dllvllo, e for all liil < 1} (11)

Pi-min{E > 0: SE(r) C Z(O)}

The set EE(ri) is positively invariant for the EAS. Therefore, denoting
by OSE(ri) the boundary of SE(rT), we have that for all x E OSE(ri)
and aJl lvll < 1:

(I + riA)z + riB1v E SE(Ti)
and, by convexity, for 0 < rf+i < ;r we have:

(I + ri+lA)z + rT+iBiv E SE(ri)
Hence SE(nr) is positively invariant for (10) [10], with r = r,+1. Since
SE(ri) contains the origin, then it includes SE(Qr+1) SO SE(ri+l) C
SE(nr) C Z(Qp). It follows that:

P.i+ = min {e S(ri+l) C Z(J)I < Hi

Since Ai is a non-increasing sequence, bounded below by ,t' (from
Theorem 2), it follows that it has a limit A* > M. Since from Lemma
1 we have that the optimal cost p0 can be arbitrarily approximated
with a rational controller, it follows from the second part of Theorem
2 thatM* = Al o.

Next, we recall the main result regarding the SISO discrete-time
11 Optimal Control Problem:

* Theorem 4: Dahleh and Pearson, [2]Let T2(z) have n distinct zeros
Zt outside the closed unit disk. Then:

;A = inf bIT1 (Z) + T2(Z) * Q(Z)lliKatab
n n

_mx EI aiRe{T,(zi)1 + EZa+n Im{T:(zO)}

subject to:
.n n

ZaiRe{zr k} + ai+nIm{z k}Irk&< 1kS = 0,1,....

Furthermore, the optimal error k satisfies:

Ok = 0, whenever JrtF < 1

OA; rk > 0

k=0

Z kz,k= T(Zi), for al i= 1,... In
k=O

(12)

(13)

(14)

From (14) it follows that only finitely many X, are non-zero. Since
Ti(z), T2(z) are rational, it follows that the optimal compensator is
also rational.

Finally, we relate the dosed-loop transfer functions of (9) and its
EAS (10). From the definitions it is easily seen that the closed-loop
transfer function obtained by applying the rational compensator K(s)
to (9) is the same as the closed loop transfer function obtained by
applying the compensator K(9rl) to the EAS (10) up to the complex
transformation z = rs + 1. Therefore, if a rational compensator K(z)
yielding an 11 cost pE is found for (10), then K(rs + 1) intemray
stabilizes (9) and yields an C1 cost p 5 ME. It foUows that a rational
compensator can be synthesized using the EAS with suitably small r.
By combining this observation with the results of Theorems 2, 3 and
4, we can state now the main result of this section.

* Theorem 5: Consider the CI Optimal Control Problem for SISO
continuous time-systems. A suboptimal rational solution, with cost
arbitrarily close to the optimal cost, can be obtained by solving a
discrete-time P1 optimal control problem for the corresponding EAS.
Moreover, if K(z) denotes the optimal 1P compensator for the EAS,
the suboptimal C compensator is given by K(rs + 1).

Remark 2: The transformation 1 +rs maps the imaginary axis, except
the origin, outside the unit disk. Hence, our approach maps plant zeros
on (-joo, joo) - {0} outside the unit disk, providing a guaranteed
cost rational continuos-time compensator in the cases in which the
optimal C' theory developed in [2] fails. In particular, it provides
rational continuous-time compensators for strictly proper continuous-
time plants which have no zeros at the origin. In this case, in View
of Theorem 1, we can achieve a cost which is arbitrarily close to the
infimum of the set of all costs associated with rational compensators.
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4. A!Simple Example

Consider the SISO plant used in [2]:

s-i

P(s) = 1 1

and assume that the output and measurement equations are given by:

I = Pu
y = -Pu+v

where v E C. Then the system (S) can be represented by the following
state-space realization:

{2 o I

(I 1 ) (5)

The optimal C' controller is given by [2]:

Kc,_ (a-2)(1-7071-4.1213e-°AS14s (5= (s - 1)(-0.7071 + 4.1213e-M )(4s)
and yields and optimal cost s° = 5.8284. For T = 0.1 the EAS is given
by:

1.2 0 0.1
I 0 1 (EAS)

and the Youla parametrization with F = -2.9091 and L = 0.3667
yields:

0.9091 0.2909 0 0.0909

0 0.8333 0.3667 0
-1.9091 2.9091 0 0.9091

0 -0.8333 0.8333 0

1.6091 -0.3667 -0.2424

= -2.9091 0 0.9091
-1.5909 0.8333 0.7576

Hence we have that:

=,
176(z- 1.1)

125(1.1z- 1)(1.2z- 1)

T2 (zl.1)(z-1.2) (16)
(11z - 1)(1.2z- 1)

Tw T, +T2Q

Solving for the optimal ll compensator yields optimal cost Pd =

6.184 and optimal error:

+(z) = 1.8414 - 4.3423z-9

The corresponding optimal Q and compensator KEAS are given by:

Q(z) = 2.4309 - 0.0525z-' + 0.0607z-' + 0.2089z-3 + 0.4004z-4
+ 0.6542z-5 + 0.9554z6 + 1.3458Z-7 + 1.8343z-8 - 3.2895z-9

KEAS = zr,(J,Q)
(17)

Finally, the transformation z = T-S + 1 yields the corresponding
compensator for the continuous time system. Although in principle
the suboptimal compensator has order 10, by using model reduction
techniques we were able to obtain a 4th order compensator yielding a

virtually identical impulse response. The closed loop system obtained
with the reduced order compensator is given by:

( 0.1581 1.0571
- 1.0571 0.6387
-1.0913 -5.7817

T = -1.3769 0.1740
0.5489 0.0412

-1.0913 1.3769
5.7817 0.1740
-2.3301 4.6435
-4.6435 -5.3510
1.6090 6.1230

0.5489
-0.0412
1.6090
-6.1230
-9.2009

-0.8419 1.0571 -1.0913 1.3769 0.5489

and it is easily shown that IITC,wII1 = DI + f ICeAtBldt = 6.184.
0

5. Conclusions
A recent research effort [1-4] has lead to techniques for designing

optimal compensators that minimize the worst case output amplitude
with respect to all inputs of bounded amplitude. In the discrete-
time SISO case, minimizing the 11 norm of the closed-loop impulse
response yields a rational compensator. Unfortunately, the solution
to the continuous-time version of the problem is non-rational. Thus,
given the difficulty of physically implementing a system with a non-
rational transfer function, in most cases this theory is primarily used
to furnish a performance limit for any linear feedback compensator.

In this paper, we have proposed a suhoptimal design technique
which enables to compute near-optimal continuous-time compensators
by applying the 1' theory to the Euler forward approximating system,
hence resulting in a rational compensator. We have shown that the
continuous-time cost is upper bounded by the 11 cost and that the
cost of the resulting suboptimal closed-loop system converges to the
optimal one as the sampling time goes to zero.

One appealing feature of our technique is that, through the use
of the simple transformation z = i-s + 1, it removes the rn-posedness
due to the presence of zeros on the imaginary axis (except for those
at the origin). This property allows us to obtain a guaranteed cost
compensator even in the cases (such as strictly proper plants) where
the 0' theory developed in [2] is not applicable.
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Appendix A: Proof of Lemma 1

Consider a strictly decreasing sequence Ej _ O and define:

e-il,,e-Z'Mtn
/ . . Ie= Imt , e~mt

F( (zi) ... F (zi)

ti =(i - 1)T, n > m

OSE(r) its boundary we must have that for x E OSE(r) and for all v
such that llvll < 1:

Let Cs(r(x) denote the tangent cone to 1(r) atxE From the
convexity of SE(r) and (B1) it follows that:

(Al)

Since all Zk are distinct, T can be selected such that er-zT A e-riT, i #
j. It folows that F has full row rank since it contains a Vandermonde
matrix. We will show that there exists J such that Pli has full row
rank for all j 2 J. Assume, to the contrary, that there exist a sequence
J = {i,3j2,--} such that for j EJ,yEli does not have full row rank.
Then, there exists Ai,IlAjljj, = 1, such that AJFE, = 0. Thus, since
-E 0 and zk, k = 1.mare in the open right half plane, we have
that for any 6 > 0 there exists J such that:

m m

IZAie-ztl = IZAi(e-z,k-F-;i (zi))I
i=O t=0

m

<EZllA Il Ie`' - F,'(Zi)j (A2)

m
<le-zithIli e -

C03(ZEy)<6VjEJ, j> J, k =,...n

Since IIA'1100 = 1, the sequence AJ has an accumulation point A such
that HAl00 = 1 and AS = 0. But this contradicts the fact that r has full
row rank. Hence there exist coefficients X1 such that Pt) = 2 ,(t)

satisfies the interpolation constraints F(Zk) = Ti(z). Moreover, since
lim F,(z) = e-ztx it follows that 0b can be selected such that k0 -Qe-*.O
Hence Ilfl -o 11111. To complete the proof consider a sequence F/ of
rational approximations to F,' (in the 11 topologr) and define

Fjt(z ) ... FI (z, )

since:

IFi'(Zk) -Fi(zk)l < Iff(t) - f'(t)ldt= lIfl - ffllhi
a similar argument shows that there exist J such that 7' has full row
rank for j > J. It follows that, for any 77 > 0, there exist Or such that

fr(t) = E 4rfir(t) satisfies llfrlll - 114i1 < q; Fr(s) is rational; and
i=l1

satisfies the interpolation constraints Fr(zk) = T, (zk). The suboptimal
rational compensator is given by Q(s) = F'(Sjg()1$ o.

Appendix B: Proof of Theorem 2

Denote by A the set of eigenvalues of A and define @(A)_ r*n 2[L(].
Then (10) is asymptotically stable if and only if (9) is stable and
0 < r < 6(A). Therefore, if A is asymptotically stable then (9) must be
so. Let Ec and SE(r) denote the closures of the origin-reachable sets
of (9) and (10), with llvll < 1. It foUows that pc = min{E:Ec C Z(E)}
and ME = min{E:EE(r) C Z(E)}, where Z(E) is defined in (11). The
set SE(r) is convex and positively invariant for (10) so, denoting by

This condition implies [11] that the set 4E(r) is a positively invariant
set for (9). Since EE(r) contains the origin, it follows that it must
contain SC. Hence Ec C EE(r) C Z(E(Qr)) and Mc < pE(t).

To prove the second part of the theorem consider the asymptoti-
cally stable continuous time systems:

where w(t) E £', IIw(t)II <c 1 is a fictitious disturbance and 6 is
a positive weighting parameter. Denote by Sa(6) and Ew(6) the
closures of the respective origin-reachable sets. Then Sc(6) is given
by the Minkowsky sum of Ec and Sw(6). Note that the asymptotic
stability of A guarantees that these sets are compact.

For p > p, the set Z(p) contains Z(Qc) in its interior so, by
an appropriate choice of 6 the set E() can be made small enough
to guarantee that Ea(b) C Z(p). To complete the proof, we show
that there exists r* such that for any 0 < r < r*, the set St(6) is a
positively invariant set of (10). Indeed, if this is the case then, since
Ea(b) contains the origin, it also contains the set Se(r) and therefore
SE(r) C Z(p). It follows that ME(7) < p. The set Sa(6) contains the
origin in its interior since (B3) is controllable from the input w. Since
Ea(6) is invariant for (B3), for each x E OSEa(6), and for all llvl < 1,
luwll < 1, the vector Ax + Biv + bw belongs to the tangent cone to
Sa(6) at x. It follows that there exists a strictly positive r such that:

x + r(Ax + Biv) E int[Ea(6)], VIlvll < 1

where int(.) denotes the interior of the set. Define:

r(x)
=
sup {r: x + r[Ax + Buv] EES(b) Vllvll < I}

Since 14(6) is convex and x E 8OE(6) if (B5) holds for some r > 0,
then it holds for all 0 < r < r(x) and in particular:

Finally, we show that r(x) is bounded below by a positive number as x

varies on the boundary of E* (6) By contradiction, assume that there
exist sequences Xk E a(65 Vk Ilukll < 1 and rk > 0, 0, such
that:

(B7)Xk + rk(Axk + BAVk) ¢ Ec(b)
Since i9E0(6) and B-{v:llVkll 5 1} are compact sets, the sequence

{Zk,Vk} E 8E4(6) x B contains a subsequence converging to a point
(x,). Hence, without loss of generality we can assume that Xk -e X

and Vk V-*. Select such that 0 < Tk < r(z) for k > r.. Since 14(6)
is convex and zk E 8E*(6), (B7) implies that:

1

Xk = Xk + Ir(a)(AXk + BliVk) O SC(6) for k >

which, in view of the convergence of Xk and tk, contradicts (B6).
Therefore, there exists r' > 0 such that for 0 < r < r9, (B5) holds
for all x E 8E (6). It follows [10] that 14(6) is a positively invariant
set for (l0).The proof is completed by selecting r* = min {r', @(A)} to

guarantee asymptotic stability of system (10) o.

(I + rA)x+rBIV E SE(r) (B1)

Ax + BIV E CSE,()(X) (B2)

z =Ax+ Biv+6w

x = Ax +6w

(B3)

(B4)

(1B5)

X = X + (2A[Ax + B1 v] E int[Eb(6)] Vilvll < 1 (B6)


