WA6 - 11:40

CONTROLLABILITY OF LINEAR IMPULSE DIFFERENTIAL SYSTEMS

Z. Benzaid* and M. Sznaier**
*Department of Mathematics
Embry Riddle Aeronautical University
Daytona Beach, FL, 32114

**Department of Electrical Engineering University of Central Florida Orlando, FL, 32816

ABSTRACT

We give necessary and sufficient conditions for global controllability of stationary and non-stationary linear impulse differential control systems on a fixed interval.

I. INTRODUCTION

Many evolutionary processes undergo rapid changes during their development; for instance, the variation of velocity of a rocket during the separation of a stage, the work of the heart muscle, the change in a population due to external effects and the control action in pulse frequency modulated control systems. Such processes are often mathematically modeled using impulse differential equations, i.e., a system of differential equations, together with relations defining jump conditions [1]. More precisely the system dynamics are generally described by:

$$\dot{\mathbf{x}} = f(\mathbf{x}, \mathbf{t})$$
 when $h(\mathbf{x}, \mathbf{t}) \neq 0$
 $\Delta \mathbf{x} = j(\mathbf{x}, \mathbf{t})$ when $h(\mathbf{x}, \mathbf{t}) = 0$

where t $\boldsymbol{\epsilon}$ R is the time variable, x $\boldsymbol{\epsilon}$ Rⁿ is the state vector, f is a map from Rⁿ x R to Rⁿ and j: Rⁿ x R to Rⁿ defines the jump condition. The system undergoes a jump Δx of "size" j(x,t) whenever the point (x,t) in the extended phase space meets the hypersurface of equation h(x,t) = 0.

In this note, we deal exclusively with deterministic linear impulse systems with fixed instants of impulse effect. More specifically we examine systems of the form:

$$(S) \begin{cases} \dot{x} = A(t)x & t \neq t_k \end{cases}$$

 $\left(\Delta \mathbf{x} = \mathbf{x}(\mathbf{t}_k^+) - \mathbf{x}(\mathbf{t}_k) = \mathbf{B}_k \mathbf{x}(\mathbf{t}_k) + \mathbf{C}_k \mathbf{u}_k \quad \mathbf{t} = \mathbf{t}_k\right)$

where $A(\cdot) \in PC(\mathbb{R}^+,\mathbb{R}^{n\times n})$, $B_k \in \mathbb{R}^{n\times n}$, $C_k \in \mathbb{R}^{n\times m}$ and $u_k \in U \subseteq \mathbb{R}^m$ is an m-dimensional control rector. The solution of (S) starting at (x_0, t_0) is given for $t > t_o$ by:

$$\mathbf{x}(t) = \mathbf{\phi}(t, t_0^+) \mathbf{x}_0 + t_0 \boldsymbol{\xi} \mathbf{t}_k \boldsymbol{\xi}_t \boldsymbol{\phi}(t, t_k^+) \mathbf{C}_k \mathbf{u}_k$$
(1)

where 0 is given by:

$$\phi(t,s)=U_k(t,t_k^+) \int_{j=k}^{11} (I+B_j)U_j(t_j,t_{j-1}^+)(I+B_i)U_i(t_i,s)$$

for $t_{i-1} < s \le t_i < t_k < t \le t_{k+1}$. Here $U_k(\cdot, \cdot)$ denotes the transition matrix of $\dot{x} = A(t)x$ on $t_{k-1} < t < t_k$.

In general terms, the controllability problem deals with the following question: If in addition to the initial state x_0 at $t = t_0$, a final state x_1 at t = T is prescribed, does there exist a sequence (u_k) of admissible controllers that steers the state x(t) from x_0 to x_0 along a solution of (S)? In this note we consider the problem of global controllability (arbitrary x_0 and x_1) on a fixed interval $[t_0,T]$ and give necessary and sufficient conditions for this property to hold for both time-varying and time invariant systems.

CH3229-2/92/0000-0211\$1.00 © 1992 IEEE

II. <u>TIME-VARYING SYSTEMS</u> We will first deal with the controllability problem using a geometric approach where we will exploit the convexity of the reachable set to characterize controllability, then we will give an alternate algebraic-analytical point of view to obtain a criterion for global controllability. The natural choices for the set of admissible controllers are balls in \mathbb{R}^{mxk} (k fixed positive integer such that $t_0 < \ldots < t_k \leq T$): $\mathbb{V}_q^r = \left\{ u = (u_1, u_2, \ldots u_k): u_1 \in \mathbb{R}^m$ and $\sum_{k=1}^k \| u_1 \|_2^k \leq r^q \right\}$

Let us define the linear operator:

L:
$$\mathbf{V}_{q}^{\mathbf{r}}$$
 to \mathbb{R}^{n} by $L(\mathbf{u}) = \sum_{i=1}^{k} \boldsymbol{\phi}(\mathbf{T}, \mathbf{t}_{i}) C_{i} \mathbf{u}_{i}$ (2)

from equation (1), we observe that the system is controllable with respect to x_o and x_1 if and only if $x_1 - \not (T, t_o) x_o$ belongs to the range of L. Since $L(U_1^r)$ is convex then $x \in L(U_q^r)$ if and only if $1y^*x i \leq H(y^*)$ for all $y^* \in (\mathbb{R}^n)^*$ where $H(\cdot)$ is the support function of $L(U_q^r)$ [see 6]. Proceeding analogously to Conti [3], we obtain a necessary and sufficient condition for controllability with respect to the pair x_o, x_1 .

 $\begin{array}{l} \underline{\text{THEOREM } I} : \quad (S) \text{ is controllable with respect to } x_o, x_l \\ \hline on \ [t_o, T] \text{ using } U = U_q^r \text{ if and only if} \end{array} \end{array}$

$$\|\mathbf{y}^{\star}(\mathbf{x}_{1} - \boldsymbol{\phi}^{(\mathsf{T},\mathsf{t}_{o})}\mathbf{x}_{o})\| \leq r(\sum_{i=1}^{k} \|\mathbf{y}^{\star}\boldsymbol{\phi}^{(\mathsf{T},\mathsf{t}_{i})} C_{i}\|_{2}^{p})^{1/p} \text{ for }$$

all y $\in (\mathbb{R}^n)^*$ where $1 \leq q \leq \infty$ and 1/p + 1/q = 1.

If $U = U_1^r$ then the condition becomes

$$|\mathbf{y}^{*}(\mathbf{x}_{1} - \boldsymbol{\phi}(\mathbf{T}, \mathbf{t}_{0}) \mathbf{x}_{0})| \leq \mathbf{r} \max_{1 \leq i \leq k} \|\mathbf{y}^{*}\boldsymbol{\phi}(\mathbf{T}, \mathbf{t}_{i}) \mathbf{C}_{i}\|_{2}.$$

In order to obtain global controllability results, we need to let the set of admissible controllers be $U=R^{mxk}$. In this instance global controllability is equivalent to the operator L being onto, i.e., $L(R^{mxk}) = R^n$. This latter condition is equivalent to the adjoint operator L^{*}, which takes $y \in R^n$ into

 $[y^{*}\phi(T,t_{1})C_{1}, y^{*}\phi(T,t_{2})C_{2}, \dots, y^{*}\phi(T,t_{k})C_{k}]\epsilon R^{mxk}$, being one-to-one. We therefore obtain the usual

algebraic criterion for global controllability.

<u>THEOREM 2:</u> (S) is globally controllable on $[t_0,T]$ using U=R^{mxk} if and only if: $[\phi(T,t_1)C_1,\phi(T,t_2)C_2,\ldots,\phi(T,t_k)C_k]$ has full rank n.

We use theorem 2 to obtain an alternate analytical characterization of controllability which becomes useful when dealing with constrained controllability [2,4]. $\underline{THEOREM~3:}$ (S) is globally controllable on $[t_o,T]$ using $U=R^{mx\,k}$ if and only if

$$\min\left\{\sum_{i=1}^{k} \|y^{*} \phi(\mathbf{T}, \mathbf{t}_{i}) C_{i}\|_{2} : \|y\|_{2} = 1\right\} > 0, \text{ equivalently}$$

if and only if there exists a positive constant \mathtt{m}_1 such that:

$$\sum_{i=1}^{k} \|y^{\star}\phi(\mathbf{T},\mathbf{t}_{i})\mathbf{C}_{i}\|_{2} \ge m_{1} \|y\|_{2} \text{ for all } y \in \mathbb{R}^{n}.$$

Remark: By equivalence of norms in finite dimensional spaces, we obtain the following characterization: (S) is globally controllable on $[t_0,T]$ iff for each p, $l \leq p < \infty$ there exists a positive constant m_p such that

$$(\sum_{i=1}^{k} \|y^{\star} \phi(\mathbf{T}, \mathbf{t}_{1}) C_{i} \|_{2}^{p})^{1/p} \geq \mathbf{m}_{p} \|y\|_{2} \text{ for all } y \in \mathbb{R}^{n}.$$

The case $p = \infty$ is treated similarly.

III. TIME-INVARIANT SYSTEMS

If we restrict ourselves to the case of constant systems, then the previous results for time-varying systems will assume simpler and more familiar forms. Furthermore, if we make the simplifying assumption that the B_i 's commute with the coefficient matrix A then the jumps can in some sense be decoupled as the resulting form of the transition matrix suggests:

$$\phi(t,t_o) = \prod_{j=k}^{I} (I + B_j) \exp(A(t-t_o)).$$

Using standard arguments, we therefore obtain the following Kalman type controllability criterion [5].

THEOREM 4: Assume that: (i) $det(I + B_i) \neq 0$ i = 1,...,k

(ii) A and B_i commute for all i = 1, ..., k.

Then (S) is globally controllable with U = R^{mxk} iff

 $rank[C_1, AC_1, ..., A^{n-1}C_1, C_2, AC_2, ..., A^{n-1}C_2, ..., C_k, AC_k, ...,$

 $A^{n-1}C_k$] is equal to n.

References

- D.D. Bainov and P.S. Simeonov, <u>Systems with Im-</u> <u>pulse Effect: Stability, Theory and Applications</u>, Halsted Press, John Wiley and Sons, 1989.
- [2] R.F. Brammer, "Controllability in linear autonomous systems with positive controller", <u>SIAM J.</u> <u>Control</u> 10 (1972), 330-353.
- [3] R. Conti, "Contributions to linear control theory", J. Diff. Eqs., 1(1965), 427-445.
- [4] M. E. Evans, "Bounded control and discrete-time controllability", <u>Int. J. Systems Sci.</u> 17 (1986), 943-951.
- [5] R. E. Kalman, "Mathematical description of linear dynamical systems", <u>SIAM J. Control</u> 1 (1963), 152-192.
- [6] R. T. Rockafeller, <u>Convex Analysis</u>, Princeton University Press, 1970.