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Constrained Controllability of 
Linear Impulse IMerential Systems 

Z. Benzaid and M. Sznaier 

Abstract-We consider the following linear impulse differential control 
system 

z = A(f)z t # t k  { &E = BkZ( tk )  + CkUk i? = t k  

where the control sequences U) belong to some set of admissible con- 
trollers that is restricted either by norm or by range. We then give 
a neeessery and sufficient condition for global null controllability of 
limevarying systems and some d c i e n t  conditions for global null con- 
trollabfity for time-invariant systems with special structures. 

I. INTRODUCTION 
Many dynamical systems are characterized by the fact that at 

certain moments in their evolution they undergo rapid changes. Most 
notably this occurs in certain biological systems, population systems, 
and even in control systems such as in pulse frequency modulated 
control systems. 

In modeling such systems, it is more tractable and convenient to 
neglect the duration of these rapid changes and assume the state 
changes by jumps. The mathematical models of such processes are 
so-called differential systems with impulse effect, i.e., a system of 
ordinary differential equations, together with relations defining the 
jump condition [l]. More specifically the model is given by 

when h(z ,  t) # 0 { A x  = j ( ~ ,  t )  when h(z ,  t )  = 0 

where t E R is the time variable, z E R" is the state vector, 
f :  R" x R +. R" and j: R" x R +. R" defines the jump 
condition. A point (z, t) in the extended phase space follows the 
solution trajectory of the differential system and as soon as it hits 
the hypersurface of equation h(x, t )  = 0, the system incurs an 
instantaneous jump of 'size' j(x, t). 

In this note, we deal solely with deterministic, linear impulse 
systems whose instants of impulse effect are fixed, i.e., represented 
by a sequence of time hyperplanes t = tk where {tk} is a given 
time sequence 

j. = f(z, t )  

k = A(t )x  t # tk 
t = tk (S)  { A X  = X ( t t )  - X(tk) = B k X ( t k )  

where k E N, A( . )  E PC(R+,  Rnxn), Bk E €2"'" and 0 2 to < 

k E N and if u k  denotes the transition matrix of k = A(t)z on 
tk-1 < t < tk, then the transition matrix 4 of (S) is 

ti < t z  < . . *  < limk+,tk = W. If d e t ( I +  Bk) # 0 for dl 

1+1 

d(t9 s) = U k ( t t ) n ( I +  Bj)Uj(tj, tf-i)(I+ B*)Uz(tc, s). 
j = k  

Consider now the following control problem 
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where Ck E R n X m  and t& E U R" for k E N are the control 
vectors. The constrained null-controllability problem deals with the 
following question: Given an initial state  to) = 20, does there 
exist a sequence {Uk} of admissible controllers that steers the system 
to the origin in a finite time T.  In most treatment of constrained 
controllability, the set of admissible controllers is restricted in various 
ways, either by norm or by range. In this note, we will give a 
necessary and sufficient condition for global null-controllability using 
controllers that are elements of unit balls of the sequence spaces Zy 
(denoted by U,). Furthermore, we provide some sufficient conditions 
for global null-controllability for systems with special properties. 

11. RESUL.TS 

We start this section by giving a general necessary and sufficient 
condition for global null-controllability. To motivate this basic crite- 
rion we introduce and briefly discuss a concept similar to that of the 
reachable set. Consider the solution of system (s)  

X ( t ,  t o ,  IO) = 4(t, t 0 ) X O  + 4(t, tz)Czu* 
to<t,<t 

if we set r(t ,  t o ,  20) = 0, we obtain using the nonsingularity of 4 

zo = d(t0, tz)C%u,. 
to<t,<t 

We now let 

z E R": x = d( to ,  t t )cEuILZ for ut  E U 
tO<t,<t 

clearly R(t, t o )  consists of all initial positions z o  E R" that can 
be steered to the origin at or before time t. If there exists a time 
T such that z0 E R(T, to)  then system (S) is null-controllable for 
T O .  To achieve global null-controllability, a necessary and sufficient 
condition is 

U R(t, t o )  = R". 
t > t o  

This last observation will translate in a divergence condition for 
global null-controllability analogous to Conti's [2] for differential 
systems without impulses. 

Theorem2.1: Assume det(I  + B,) # 0 for all i E N .  
Then (S) is globally null-controllable by means of U, if and 
on~y if limt,,, c~,<~, IIC?dT(to, t z ) y l l g  = +CO for all 
nonzero y E R" where (l/p) + ( l / q )  = 1. Furthermore (S) 
is globally null-controllable by means of U1 if and only if 
limk-, maxls,<k IIC,TdT(to, t , ) y ( ( z  = +cc for all nonzero 
y E R". 

Proof: We give a brief proof for the case U = U,. Similar 
arguments apply to the other cases. 

Necessity: If I E R(t, t o )  for some t 2 t o ,  then there exists a 
sequence { u ~ } : = ~  such that for all y E R" 

YTX = yTd(to, tZ)CiUZ. 
to<t,<t 

By duality we get: 

Since 
condition. 

R(t, to) = R", this inequality implies the divergence 
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SufJiciency: Assume that the convex set U,,,, R( t ,  t o )  is a 
strict subset of R", i.e, there exists X O  E Rn-such that z o  $! 

R( t ,  t o ) .  By the separation hyperplane theorem there exists 
yo E R" such that: lyfxo) 2 1y?x) for all x E U,>,, - R(t, to) .  It 
is easy to show that 

From the assumption of stability we know that Il@(t, to)II  5 
some h- > 0 and all t 2 t o ,  therefore 

for 

1 
L j$lY112. (2.4) IlYll; 

IlyTdT (t(n+l)r, t o )  (I2 ) l Q T ( t o ,  f4n+lir)YJJ2 2 

Therefore inequality (2.3) becomes 

and therefore the divergence condition cannot hold. 
Theorem 2.1 constitutes a complete characterization of global 

null- controllability and clearly demonstrates the dependence of 
controllability on the transition matrix p, the control matrices C,'s 
and the set of admissible controllers through the exponent p. To insure 
divergence of the infinite series, basically three conditions have to be 
met: 

1) The products C:@(., t t )y  cannot be identically zero for 
nonzero y E R", in other words, for the system to be 
controllable with constrained controls it has to be controllable 
with unconstrained controls. 

2) The matrices dT( . ,  t . )  do not decay to zero too rapidly, i.e., 
the solutions of (S)  do not grow too fast for the restricted 
controller to keep up. 

3) The exponent p has to be the proper one and hence the 
appropriate set of admissible controllers has to be used. 

We conclude from the above remarks that if a system is stable in the 
sense of bounded transition matrix (but not necessarily asymptotically 
or exponentially stable) and in some sense uniformly controllable 
with unconstrained controllers, we would expect it to be globally 
nullcontrollable with certain classes of admissible controllers (see 

Indeed the next theorem shows that this is in fact true but before we 
state and prove the theorem, let us introduce the well-known concept 
of uniform controllability by giving a formal definition; see Kalman 
[4] for more general definitions. 

Dejinition 2.1: ( S )  is uniformly controllable on [to,  CO] if there 
exist a positive integer T and a positive real number (Y such that for 
all positive integers n 2 t o  we have 

PI). 

r+n 

z=n 

in the sense of quadratic form. 
Theorem 2.2: Assume det ( I  + B,) # 0 for all i E N .  If (S) is 

uniformly controllable on [to, CO] and stable, then it is globally null- 
controllable by means of U, for all 1 < q < CO. Moreover, if the 
system is asymptotically or exponentially stable it is also controllable 
by means of U1. 

Proofi To prove global null controllability we use the diver- 
gence condition given in Theorem 2.1. Consider the infinite series 

(2.1) can be rewritten as 

The right side of (2.5) clearly diverges, hence we have global 
null-controllability by means of all U,, 1 < q I ca. A similar 
argument can be applied to show that if (S) is asymptotically or 
exponentially stable then it is globally null-controllable by means of 

In case (S) is time-invariant, then we have the following corollary. 
Corollary 2.1: If (S) is a stable, time-invariant system and 
1) det(1 + B z )  # 0 for all i E N 
2) A and B, commute for all i E Ai 
3) rank[C,, AC, , . . . ,An- lC, ]  = n for all i E X. 
Then (S) is globally null-controllable by means of U,  for all 

1 < q < CO. Furthermore if (S) is asymptotically stable then it 
is globally null-controllable for all 1 5 q 5 00. 

Remark 2.1: Note that stability and uniform controllability do not 
necessarily imply global null-controllability by means of U1 , i.e., the 
unit ball of ZF. Indeed consider the easy example 

U,, 1 I 4 < W. 

k = O  t # t k  

A X  = U k  t = t k .  

It is clear the only initial conditions zo that can be steered to zero 
are such that -1 5 T O  5 1. 

In the case of constant systems, if we impose some structural 
and growth conditions, we can apply Theorem 2.1 to obtain various 
other criteria that are sufficient for global null-controllability. More 
explicitly suppose that the B,'s commute with the coefficient matrix 
A and the products (1+ B z ) 9 ( t t + l ,  t z )  do not grow too fast, where 
@ ( t ,  to) = exp (A(t - t o ) ) ,  then we obtain the following sufficiency 
condition. 

Theorem 2.3: Assume 
i) det (I + B,) # 0 for all z E N 
ii) A and B, commute for all i E il; 
iii) rank[C,, AC ,,..., A"-'C,] = n for all i E N 
iv) ll(1-t &) [ I  Il@(tz+l, t,)ll 5 yt where yz's satisfy 

Then (S) is globally null-controllable by means of U,  for all q 
such that 1 < q 5 CO. (Note: ( l /p )  + ( l /q)  = 1.) 

Proof: We again rely on the criterion given in Theorem 2.1 to 
show global null-controllability. Proceeding similarly as in the proof 
of Theorem 2.2 we have 
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Therefore 

(2.6) implies that 

P 
assumption iv) implies that n ~ ~ ~ f ” ‘  ($) = O ( $ )  therefore the 
right-hand side of (2.7) diverges. This proves the theorem. 

Finally we end this note by giving one more application of Theorem 
2.1 to a system with a special structure. Suppose system (S) is given 
by 

j. = Ax t # tk 
t = t k  { AX = akx(tk) + C k ~ k  

then the transition matrix d becomes 

k 
a , ) e A ( t - - t ~ ) .  4(t, t o )  = + 

,=1 

We therefore obtain the following sufficiency condition. 
Theorem 2.4: Assume 
i) at # -1 for all i E N 
ii) rank[C,, AC2,...,An-’C,] = n for all i E N 
iii) Re(A,) I 0 for all eigenvalues A, of A 
iv) pCy=l  Ia,I I Inn for all n E N 
Then (S) is globally nullcontrollable by means of U, for all q 

such that 1 < q 5 03. 

Pro08 Proceeding similarly as before, we have 

Without loss of generality assume that t(,+,), = t o  + ( n + l ) r .  Since 
(1 + lai~) 5 ela“ the previous inequality assumes the form 

We explicitly bound llexp(-AT(n + l)r)yI(: from below, indeed 
for all nonzero y E R” 

where /3 E R ,  v E N and a( t )  depend in general on the jordan 
canonical form of A and the vector y and satisfy the following: 

1) minlstss Re(&) I P I 0 
2) 0 I v I max15,5, (n,  - 1) 

a ( t )  E 0 if v = 0 
and { a( t )  + 0 a s t + o o  i f v > O  

3) a > 0 where A N 

jordon blocks of order nl.  
J ,  where J ,  i = 1, 2 , . . . , s  are 

P 
. [ (n + l ) T ] ” P ( a  + o(1))y.  

By assumptions ii) and iv), we obtain 

which is clearly a divergent series. This completes the proof of the 
theorem. 

Remarks: 
The assumption on the coefficient matrix A is that Re (A,) 5 0 
for all eigenvalues A, of A, therefore any repeated eigenvalue 
with zero real part give rise to an unstable mode. So the 
theorem does take into consideration unstable systems (albeit 
polynomial growth instability). 
Clearly in case (S) is asymptotically stable, i.e., Re(X,) < 0 
for all eigenvalues A, of A then global null controllability of 
(S) follows even if we used U1 provided assumption iv) is 
replaced by 
We can obtain a less conservative result if condition iv) of the 
theorem is replaced by a condition that insures the divergence 
of the infinite product (n(l + a%))-’. 
If the jump matrix is constant, i.e., (S) has the form 

Ia21 < 2P(n + 1 ) ~ .  

and if A and B commute, then using similar arguments as 
above, it can be shown that (S) is globally null-controllable 
provided the Kalman rank condition holds and the moduli of 
the eigenvalues of (1 + B)eA are less or equal to one (See 131). 

III. CONCLUSION 
this note we gave a general necessary and sufficient condition 

for global null-con~ollabil& with constrained controls of differential 
systems with impulse effect. Relying on this criterion and the concept 
of uniform controllability in addition to certain growth conditions on 
the system transition matrix and the sizes of the jumps we obtain 
sufficiency conditions for global constrained controllability of certain 
stable and unstable systems. 
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