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ABSTRACT

We consider the following linear impulse differential
control system

x = A(t)x t $tk
Ax = Bkx(tl,) + Ckuk t =t

where the control sequences {uj) belong to some set of
admissible controllers that is restricted either by norm or

by range. We then give a ncssary and sufficient
condition for global null controllability of time-varying
systems and some sufficient conditions for global null
controllability for time-invariant systems with special
structures.

I. INTRODUCTION

Many dynamical systems are characterized by the
fact that at certain moments in their evolution they
undergo rapid changes. Most notably this occurs in
certain biological systems, population systems and even in

control systems such as in pulse frequency modulated
control systems. In modeling such systems it is more

tractable and convenient to neglect the duration of these
rapid changes and assume the state changes by jumps.
The mathematical models of such processes are so-called
differential systems with impulse effect, i.e., a system of
ordinary differential equations, together with relations
defining the jump condition [1. More specificaly the
model is given by:

x = f(x,t)

[Ax = j(x,t)

when h(xt) * 0

when h(x,t) =0

where t E R is the time variable, x E Rn is the state

vector, f:R xR-R andj:Rn xR-Rndefines thejump
condition. A point (x,t) in the extended phase space

follows the solution trajectory of the differential system
and as soon as it hits the hypersurface a of equation h(x,t)
= 0, the system incurs an instantaneous jum of 'size'
j(x,t).

In this note, we deal solely with deterministic,
linear impulse systems whose instants of impulse effect
are fixed, i.e., repesented by a sequence of time
hyperplanes t = tk where {tk} is a given time sequence.

= A(t)x
(S) I

(Ax = x(t;) -x(tk,) =Bkx(k)

t* tj

t =tk

where

k e N, A() ePC(R,R9), BkeRm

x-Xwtk

If det(I + B) 0 jor all k E N and if Uk denotes the
transition matrix of x = A(t)x on tk-I < t < t then the

transition matrix of (S) is

*(t,s) =Uk,(C) H (I+B)U%j(ti,tj1d)(I+Bi)Ui(tY,s)
=k

Consider now the following control problem:

x = A(t)x t

(S)
Ax=Bkx(tk)+Cku t=tk

where CkE R` and uw, E U c Rm fork E N are the
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control vectors. The constrained null-controllability
problem deals with the following question: Given an
initial state x(tW) = ko does there exist a sequence {Uk} of
admiible controllers that steers the system to the origin
in a finite time T. In most treatment of constrained
controllability the set of admissible controllers is restricted
in various ways, either by norm or by range. In this
note, we will give a necessary and sufficient condition for
global null-controllability using controllers that are
elements of unit bals of the sequence spaces fe (denoted
by U). Furthermore, we provide some sufficient
conditions for global null-controllability for systems with
special properties.

II - RESULTS

We start this section by giving a general
necessary and sufficient condition for global null-
controlability. To motivate this basic criterion we
introduce and briefly discuss a concept very similar to that
of the reachable set. Consider the solution of system (S)

x(t,Itox) = *(t,t9)X0 + t>e<t 4(,9CA
if we set x(t, to, x,) = 0, we obtain using the

nonsingularity of +

xo= to7V<t t(yt)Ciui

We now let

R(t,tq) ={:eRt x =
to< ti Ct 1 1 i

for uicU}

clearly R(t,t0) consists of all initial positions xo E Rn that
can be steered to the origin at or before time t. If there
exists a time T such that ko E R(T, to) then system (S) is
null-controllable for ko. To achieve global null-
controllability, a necessary and sufficient condition is

U R(t,to))=Rn
t2to

This last observation will translate in a divergence
condition for global null-controllability analogous to
Conti's [2] for differential systems withoutimpses. We
omit the proof as it uses similar basic arguments from
convex analysis.

Theorem 2.1: Assume det(I + B.) . 0 for all iEN.
Then (S) is globally null-controllable by means of Uq if
and only if

lim E2C T%,iyP= +0X
-- tCt^

nonzero y E RI where -+-= 1
p q

for all

. Furthermore (S)

is globally null-controllable by means of U; if and only

if lim maX lCiTT(tO,3)y12= +o
k-- lsLik

for all nonzero y E Rn.
Theorem 2.1 constitutes a complete

characterization of global null-controllability and clearly
demonstrates the dependence of controllability on the
transition matrix $, the control matrices Ci's and the set
of admissible controllers through the exponent p. To
insure divergence of the infinite series, basically three
conditions have to be met:

1. The products CJiTqT(.,ti)y cannot be

identically zero for nonzero y E Rn, in other
words, for the system to be controllable with
constrained controls it has to be controllable with
unconstrained controls.

2. The matrices $T(.,t1) do not decay to zero

too rapidly, i.e., the solutions of (S) do not grow
too fast for the restricted controller to keep up.

3. The exponent p has to be the proper one and
hence the appropriate set of admissible
controllers has to be used.

We conclude from the above remarks that if a
system is stable in the sense of bounded transition matrix
(but not necessarily asymptotically or exponentially stable)
and in some sense uniformly controllable with
unconstrained controllers, we would expect it to be
globally null-controllable with certain classes of
admissible controllers (see Sontag and Sussman [5]).
Indeed the next theorem shows that this is in fact true but
before we state and prove the theorem, let us introduce
the well known concept of uniform controllability by
giving a formal definition, see Kalman [4] for more
general definitions.

Definition 2.1: (S) is uniformly controllable on [to, x]
if there exist a positive integer r and a positive real
number a such that for all positive integers n . to we
have
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r+n
E *(krn CiCji *T(Q+n 9t,) 2 aI
i =n

in the sense of quadratic form.

Theorem 2.2: Assume det(I + B) . 0 for all i E N.
If (S) is uniformly controllable on [to, m] and stable then
it is globally null-controllable by means of U. for all I <
q . a. Moreover if the system is asymptotically or
exponentially stable it is also controllable by means of U1.

Proof: To prove global null-controllability we use the
divergence condition given in theorem 2.1. Consider the
infinite series

00

i: cT yL)yd where ! + 1-' 1
i=l p q

(2.1)
(2.1) can be rewritten as

Xo (n +1)r
n=O i=nr

(2.2)
Using the assumption of uniform controllability we obtain

SICo 4)T(t y12 WE (toIt>,ol)Y(
i=1 n=0

(2.3)
From the assumption of stabiity we know that

I+(t,to)I.K for some K > 0 and all t > to,
therefore

2

1yTT12+ ) 9Q1
1 IY4K,

following corollary:

Corollary 2.1: If (S) is a stable, time-invariant system
and
1) det (I- + B).7O for all i E N
2) A and B2commute for all i E N
3) rank [C, AC', , A ''Cj- n for all i E N.

Then (S) is globally null-controllable by means of Uq for
all I < q < cm. Furthermore if (S) is asymptotically
stable then it is globally null-controllable for all
.q.o.

Remark 2.1: Note that stability and uniform
controllability does not necessarily imply global null-
controllability by means of U1, i.e., the unit ball of et.
Indeed consider the easy example:

x0x = u

AX = Uk

t. tk

t =tk

It is clear the only initial conditions ko that can be steered
to zero are such that -1 . x0 . 1.

In the case of constant systems, if we impose
some structural and growth conditions, we can apply
theorem 2.1 to obtain various other criteria that are
sufficient for global null-controllability. More explicitly
suppose that the B1's commute with the coefficient matrix
A and the products (I + Bi) I (ti+1, t) do not grow too
fast, where P(t, to) = exp(A(t-tD)), then we obtain the
following sufficiency condition:

Theorem 2.3: Assume
i) det(l + B) . Oforalli E N
ii) A and Bi comute for al i E N
iii) rank [Ci, AC, .., A'CJ = n for all i E N
iv) 1(I + Bi)I *(t +i , t) | < 'y where 'Yr

satisfy

(2.4)
Therefore inequality (2.3) becomes

EC 41¢Tt409Y.12 2 Ka IYI2
i=1 n=

(2.5)
The right side of (2.5) clearly diverges, hence we have
global null-controllability by means of all Uq, 1 < q .
m. A similar argument can be applied to show that if (S)
is asymptotically or exponentially stable then it is globally
null-controllable by means of Uq, I . q . ao.

In case (S) is time-invariant then we have the

j nyi=0(innP) as n-Oo.
ial

Then (S) is globally null-controllable by me-ans of Uq for

allqsuchthatl < q < a. (Note: 1 1=1
p qr

)

Proof: We again rely on the criterion given in theorem
2.1 to show global null-controllability. Proeeding
similarly as in the proof of theorem 2.2 we have:
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m m ~~~~~~~p

E iciT+(to ,ti)yl 2'i E a |Wrt(tot<,+l))y2
iC@ t . 10

£ ICiTC(yt)yI, 12 a 2 (1 + I1)-PIle -AtOU-1)y.
i-I iji

Without loss of generality assume that t(n+I = to +
Now

1 +a1>-1 (ne1>

Ivt(U+j,tOq=I H (I+B1) H Yt,t)Is H Yi
i-(+l)r i-O l

(2.6)
Since

I+Tqo(nl)ry12 2 lyT4>T(<1y2

(2.6) implies that

1 IL ( (to,toy2 > W(O 1 1Y12
n=O i- Yi

(2.7)
assumption (iv) implies that

i=j? (if = 9) therefore the right hand

side of (2.7) diverges. This proves the theorem.

Finally we end this note by giving one more
application of theorem 2.1 to a system with a special
structure. Suppose system (S) is given by

Ji Ax t tk
AX kx(tk) + Ckuk t tk

then the transition matrix * becomes

*(t,to) =11(1 +a)eMt@
i=l

We therefore obtain the foHowing sufficiency condition:

Theorem 2.4: Assume
i) axi . -1 for all i E N
ii) rank [Ci, AC1, ..., A"'CJ = n for all i E N
iii) Re(\,) < 0 for al eigenvalues \ of A

n I

iv) E1 ail . Inn
i=1

for all n E N

Then (S) is globally null-ontrollable by means of Uq for
all q such that 1 < q < w.

Proof: Proceeding similarly as before, we have

(n+l)r. Simce (I+la 1) . e Jil the previous

inequality assumes the form:

- IC.TT(t\ty-i aeV P E cc IIe(-A T(n+1)w
i- Ma w

We explicitly bound le (-A T 2 from below,

indeed for all nonzero y E RI

lexp(-A T) 2 2 e*p-2pt)t2v(a +a(t))
where fl E R, v E N and a(t) depend in general on the
jordan canonical form of A and the vector y and satisfy

I. min Re(Xd) s °O
1hiss

.20.viax(n-1) nd (t)-O as t-oo if v>O

.3 a>O where A -D Ji where Ji i=1,2<o,s

are jordon blocks of order n-. Therefore

W7(%to'4SI2pj -Sil +IP(+1 ((n+1)J'P(a4-(1))2.

By assumptions (ii) and (iv) we obtain

ICiTT(tot,t)yc a2 (1 (a+o(1))P
i-I ~~~n=0 (n+1)r

which is clearly a divergent series. This completes the
proof of the theorem.

Remarks:
1. The assumption on the coefficient matrix A is

that Re(\,) < O for all eigenvalues of A,
therefore any repeated eigenvalue with zero real
part gives rise to an unstable mode. So the
theorem does take into consideration unstable
systems (albeit polynomial growth instability).

2. Clearly im case (S) is asymptotically stable, i.e.,
Re() -< 0 for all eigenvalues \ of A then
global null-controllability of (S) follows even if
we used U1 provided assumption (iv) is replaced
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output feedback design for linear systems with
rjczf.c2n(n+1)r saturating controls" 29th IEEE Conference on

by Decision and Control, Hawaii, 1990, p. 3414-
3416.

3. We can obtain a less conservative result if
condition (iv) of the theorem is replaced by a
condition that insures the divergence of the
infinite product (11(1 + ai))-1.

4. If the jump matrix is constant, i.e., (S) has the
form

<*=Axc t tk
ix BX(tk) +CkUk t tk

and if A and B commute, then using similar
arguments as above, it can be shown that (S) is
globally null-controllable provided the Kalman
rank condition holds and the moduli of the
eigenvalues of (I- + B) eA are less or equal to 1.
(See [3])

III. CONCLUSION

In this note we gave a general necessary and
sufficient condition for global null-controllability with
constraned controls of differential systems with impulse
effect. Relying on this criterion and the concept of
uniform controllability in addition to certain growth
conditions on the system transition matrix and the sizes of
the jumps we obtain sufficiency conditions for global
constrained controllability of certain stable and unstable
systems.
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