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In this paper, the small signal analysis of the LCC-type

parallel resonant converter (LCC-PRC) operating in the

continuous conduction mode is given. This analysis is based on

both the state-plane diagram, which has been successfully used

to obtain the steady state response for resonant converters,

and the Taylor series expansion. Applying perturbation directly

to the steady state trajectory, a discrete small signal model

for the converter can be derived in terms of the input voltage,

switching frequency, and the converter state variables. Based on

this analysis, closed-loop form solutions for the input-to-output

and control-to-output transfer functions are derived. It is shown

that the theoretical and computer simulation results are in full

agreement.
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I. INTRODUCTION

To achieve the desired system stability, the
open-loop control-to-output frequency response is
used to analytically design the transfer function of
the control circuit. Furthermore, the characterization
of the closed-loop small signal performance due
to the line voltage is necessary to predetermine
the open-loop line-to-output frequency response.
Depending on the complexity of the converter
topology and circuit component models used for the
converter power stage, these frequency responses
may be obtained experimentally, numerically, or
analytically. Experimental measurements of the
converter frequency responses become necessary
when the converter power stage is known as a black
box. On the other hand, if the circuit topology as
well as the control technique of the converter power
stage are known, then the power stage responses can
be simulated numerically, thus avoiding the costly
construction of the converter power stage. However,
due to highly intensive computations, this method is
time consuming. Hence, it is worthwhile to derive the
analytical solutions so that excessive time and expense
in the experimental approach can be avoided. It is
more efficient to utilize analytical solutions for the
power stage responses in the systematic design of a
control circuit.
To avoid costly construction and debugging of

converter prototypes based on the trial and error
approach, analytical methods to obtain the small
signal frequency responses for dc-to-dc converters
have been developed [1—24]. The analytical small
signal frequency responses help a circuit designer
choose a proper compensation circuit or debug the
design of the converter power stage from its steady
state characteristics so that the small signal frequency
responses of the revised converter and the selected
compensation circuit are compatible for attaining the
desired system stability. For many years, published
work in this area has been focused on the pulsewidth
modulation (PWM) converters [1—12]. In recent years,
however, the small signal analysis of dc-to-dc resonant
converters have been investigated by many researchers
in this field [12—24]. Thus far, the analysis to achieve
the small signal behavior is limited to second-order
series and parallel resonant converters (PRCs)
[13—22], with little work done on high-order resonant
converters [23, 24]. This analysis is complicated in its
mathematics and obscure in its physical insight into the
converter operation due to a stringent time-domain
analysis. An alternative analytical method is needed
to easily visualize the small signal behavior around the
converter steady state trajectory and to allow further
generalization to a larger class of resonant converters.
The steady state analyses for numerous resonant

converter topologies have been thoroughly investigated
in the literature. The steady state responses of these
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converters are known and in most cases have been
represented by closed trajectories in the state-plane
diagram [19, 21, 28—31]. Since the state-plane diagrams
of resonant converters in general consist of only a few
well defined simple geometric curves in the state-plane,
it is possible to develop a generalized computer
program from which the frequency responses of a
resonant converter can be derived once its state-plane
diagram is specified. Hence, this technique can be
generalized to any resonant converter topology once
its state-plane trajectory is known. Moreover, by using
the state-plane diagram approach, more physical insight
into the converter dynamic behavior can be obtained.
This is because the perturbation is done graphically on
the state-plane diagram with the actual displacement
of the converter state variables, as well as input and
control parameters, being observed.
The analysis method was first used to achieve

the discrete small signal models of the conventional
series resonant converter (SRC) and PRC under
variable switching frequency control in [19] and
[23] respectively. In this analysis technique, the
initial perturbations on the converter state variables,
the control and source inputs, were made on the
state-plane diagram to produce the perturbed
state trajectories. Then, using the geometrical
relation between the steady state and the perturbed
trajectories and applying the superposition theorem,
the perturbation response can be written as a linear
combination of those initial perturbations. Observing
the differences between the steady-state and the
perturbed trajectories that are constructed on the
same state-plane, we can attain better understanding
of the converter small signal behavior. The discrete
small signal models of these resonant converters
are developed without the time-averaging of the
output waveform. When the converter operates in
the continuous conduction mode (CCM), the discrete
small signal model can correctly predict small signal
frequency response because the same set of the
perturbed states exists at any given time and these
perturbed states possess their continuities throughout
the converter operation. This technique is applied to
obtain the frequency response for the well-known
LCC-type PRC. Its steady state analysis has been
thoroughly analyzed in the literature [25—28]. Once the
small signal model of the converter is obtained, then
its closed-loop compensation can be properly designed
and simulated before actually building the converter.
The steady state analysis and the derivation of

the state-plane diagram for the LCC-type PRC is
briefly discussed in Section II. Section III provides
the mathematical development of the small signal
analysis. Using Taylor series expansion coupled with
the symmetry in steady state state-plane response, we
derive the line-to-output and the control-to-output
transfer functions. Consequently, the frequency
responses can be computed from these functions.

Fig. 1. Simplified circuit of LCC-type PRC.

Since it is always possible to decompose any order
dc-to-dc resonant converters into many decoupled
two-dimensional state-plane by using state-variable
transformation technique, the small signal analysis
presented here is based on two-dimensional state-plane
diagram [29]. By using the state-plane diagram
approach, more physical insight into the converter
dynamic behavior can be obtained. This is because
the perturbation is done graphically on the state-plane
diagram with the actual displacements of the converter
state variables and input and control parameters
observed. To verify our theoretical work, computer
simulation results are presented in Section IV and are
compared to the theoretical ones.

II. STEADY STATE ANALYSIS

In order to analytically obtain the small signal
response of a resonant converter, it is necessary that
its dc operating conditions be known. Using this steady
state trajectory, a geometrical approach can be used
to derive the small signal frequency response model
of the converter. In this section, steady state analysis
that is based on the state-plane diagram will be briefly
discussed. The objective here is to express the steady
state parameters of the converter in terms of the
initial switching points of the state-plane trajectory.
Once such expressions are obtained, then perturbation
signals on these state-variable parameters are injected
directly into the state-plane diagram.
The idealized circuit of the LCC-type PRC

(PRC-LCC) is shown in Fig. 1. The detailed steady
state analysis of the converter can be found in [26—29].
Throughout the analysis, it is assumed that the
resonant circuit is lossless and the switching devices
and diodes are ideal. When the converter operates
under CCM with 50% duty ratio over one switching
period Ts, it can be shown that the effect of switching
of transistor/diode pairs can be represented by an
equivalent square wave voltage source vs(t) with
magnitudes +Vg and ¡Vg. Moreover, assuming very
large L0, the input current to the full-bridge rectifier,
iE(t), may be presented by a dependent current source
of magnitudes +I0 and ¡I0, depending on whether
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Fig. 2. Equivalent model of Fig. 1.

vcp(t) is greater or less than zero, respectively. Hence,
the resultant equivalent circuit model is shown in
Fig. 2 from which the following differential equations
are obtained,

dil(t)
dt

=
1
L
[vs(t)¡ vcs(t)¡ vcp(t)] (1)

dvcp(t)

dt
=
1
Cp
[il(t)¡ iE(t)] (2)

dvcs(t)
dt

=
1
Cs

l(t): (3)

Defining a new state variable, vc(t) = vcp(t) + vcs(t),
then (1)—(3) can be rewritten as follows,

dil
dt
=
1
L
[vs(t)¡ vc(t)] (4)

dvc
dt
=
1
CT

"
il(t)¡

iE(t)
(1+Cp=Cs)

#
(5)

where CT is the total capacitance given by

1
CT

=
1
Cp
+
1
Cs

dvc
dil

=
L

CT

il¡
iE

(1+Cp=Cs)

vs¡ vc
:

(6)

From (4) and (5), the state-plane equation in terms
of vc(t) and i1(t) is given by, (6) can be expressed in
terms of the normalized state-plane equation in the
following form,

dvnc(t)
dinl(t)

=
inl(t)¡ i0nE(t)
vns(t)¡ vnc(t)

(7)

where

vnc(t) = vc(t)=Vg vns(t) = vs(t)=Vg

inl(t) = Z0il(t)=Vg inE(t) = Z0iE(t)=Vg

i0nE(t) =

"
1¡
μ
!0s
!0

¶2#
inE(t)

and the characteristic impedance Z0, and resonant
frequencies !0 and !0s are given by

Z0 =

s
L

CT
, !0 =

1p
LCT

and !0s =
1p
LCs

:

Fig. 3. Typical state-plane trajectory for LCC-PRC.

It can be shown that the solution of (7) consists of
four circular arcs in the inl¡ vnc state-plane with each
singular point [vns, i

0
nE] corresponds to one of the

following intervals,

[vns, i
0
nE] =

8>>><>>>:
(+Vng,¡I0n0) t0 · t < t1
(+Vng,+I

0
n0) t1 · t < t0 +Ts=2 = t2

(¡Vng,+I0n0) t2 · t < t3
(¡Vng,¡I0n0) t3 · t < t0 +Ts

(8)
where Vng = vg=Vg. In steady state, Vng = 1.
Typical inl¡ vnc state-plane diagram is illustrated

in Fig. 3. Detailed derivation of this figure is given in
[28]. In this figure, ¯1 is the angular displacement of
the trajectory when T1 is turned on with vcp < 0, ¯2
is the angular displacement of the trajectory when
T1 is conducting with vcp > 0, and ® is the angular
displacement when D1 is conducting. These angles are
related to the switching and resonant frequencies by,

° = ¯1 +¯2 +®=
!0Ts
2
=
f0
fs
¼ =

¼

fns
(9)

where fs and f0 are the switching and resonant
frequencies, respectively, and the normalized frequency
is defined by fns = fs=f0 with f0 = !0=2¼. The solution
of (7) consists of four circular arcs in the vnc¡ inl
state-plane given by

(vnC ¡ vns)2 + (inL¡ inE)2 = V2nmi (10)

where i= 1, 2, 3, and 4 and Vnmi are the radii which
are given by

Vnmi =

½
Vnm1 for t0 · t < t1 or t0 +Ts=2 · t3
Vnm2 for t1 · t < t0 +Ts=2 or t3 · t < t0 +Ts

:

(11)

From the state-plane diagram, it can be shown that

Vnm1 =
q
(Vng ¡ vnC(t0))2 + (inL(t0)+ In0)2 (12)

Vnm2 =
q
(inL(t1)¡ In0)2 +V2ng : (13)
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The dc output voltage V0 is obtained by taking the
average value of the resonant capacitor voltage, vcp,
to yield

V0 =
1
°

"
1¡
μ
!0s
!0

¶2#
[(°¡ 2¯1)Vg +2Z0il(t1)]

(14)
where

¯1 = !0(t1¡ t0):
The converter gain is obtained by normalizing (14) to
give

M =
V0
Vg
=
1
°

"
1¡
μ
!0s
!0

¶2#
[(°¡ 2¯1)+2inl(t1)]:

(15)

Since the steady state analysis shown here is only for
the PRC-LCC operating in the natural commutation
mode, inl(t0) must be positive and it can be expressed
as

inl(t0) =

s
I2n0 +

μ
1
I2n0
¡ 1
¶
v2nC(t0) ¡ In0: (16)

For the converter design, it is more convenient to
express the output voltage and converter gain in terms
of the initial switching points vnc(t0) or inl(t0) instead
of inl(t1). From the state-plane diagram given in Fig.
3, it can be shown that the following relation can be
obtained,

inl(t1) =¡
vnc(t0)
I0n0

: (17)

Substituting (17) into (15), the converter gain becomes

M =
1
°

"
1¡
μ
!0s
!0

¶2#·
(°¡ 2¯1)¡

2vnc(t0)
I 0n0

¸
: (18)

Finally, we need to express the switching angles ¯1,
¯2, ®, and ° in terms of the initial switching point
[vnc(t0), inl(t0)]. This can be accomplished from the
state-plane diagram given in Fig. 3 to obtain the
following relations,

¯1 = tan
¡1 inl(t1)+ I

0
n0

1¡ vnc(t1)
¡ tan¡1 inl(t0)+ I

0
n0

1¡ vnc(t0)
(19)

¯2 +® =
3¼
2
¡ tan¡1 inl(t1)¡ I

0
n0

1¡ vnc(t1)
¡ tan¡1 inl(t0)+ I

0
n0

1+ vnc(t0)
:

(20)

Using (9), (19), and (20), the following functional
expression for ° can be obtained as follows,

° = °[vnc(t0), inl(t0),I
0
n0,!0=!0s]: (21)

For the converter design, given !0=!0s, we may
calculate I 0n0, M, and ° once the initial switching point
[vnc(t0), inl(t0)] is known. In the following section,
based on the steady state equations derived in Section
II, we derive the small signal model by injecting
perturbation to the state-variables of the state-plane.

Fig. 4. Converter block diagram under line and control signals
perturbations.

III. SMALL SIGNAL ANALYSIS

As shown in Section II, when the converter
response is in steady state, the trajectory of its state
variables forms a unique closed contour for every
switching period with stable dc values. However, the
converter trajectory can deviate from this unique
contour due to disturbances on the line and control
inputs. In such a case, the trajectory becomes a
perturbed trajectory. Under small signal perturbation,
the excursion of the perturbed trajectory from the
steady state trajectory can be physically observed
on the state-plane diagram [22, 23]. Physically,
the small signal excursions from the steady state
trajectory can be observed as the perturbed trajectory
periodically shrinks and expands around the steady
state trajectory at the frequency of perturbation. Major
sources of perturbations are due to the input and
frequency variations. Fig. 4 shows a simplified block
diagram for a closed-loop converter system under line
voltage vg, and control signal (switching frequency)
fs, perturbations. Based on this model, we derive
closed-form solutions for the line-to-output transfer
function H1(s) and control-to-output transfer function
H2(s) which are defined as follows,

H1(s) =
v̂0
v̂g

(22a)

H2(s) =
v̂0
f̂s
: (22b)

In this section, based on the state-plane diagram
and the generalized analysis presented in [21], the
small signal analysis for the PRC-LCC when operated
in the CCM is derived. By introducing perturbations
to the converter state variables, controlled switching
frequency, and the input voltage at the beginning of
a half switching period, we can obtain the perturbed
response at the beginning of the next half switching
period by using Taylor series expansion. Based on this
technique, a closed form solution for H1(s) and H2(s) is
derived from which we obtain the frequency response.
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Fig. 5. Perturbed steady state trajectory of Fig. 3.

Under small signal perturbations, we define kth and
(k+1)th as trajectories in the first and second half
switching cycles of the state-plane diagram of Fig. 4,
respectively, as shown in Fig. 5. Using this figure, the
state-variables at the end of the half switching cycle
can be related to the state-variables at the beginning
of the half switching cycle, the normalized voltage
Vng, and the normalized switching frequency fns. The
beginning and the final normalized state variables at
the kth half switching cycle are defined as follows:

inl(k) resonant current at the beginning of the
kth half switching cycle,

vnc(k) resonant voltage at the beginning of the
kth half switching cycle,

fns(k) switching frequency for the kth half
switching cycle,

In0(k) output current for the kth half
switching cycle,

inl(k+1) resonant current at the end of kth half
switching cycle,

vnc(k+1) resonant voltage at the end of kth half
switching cycle,

In0(k+1) output current for the (k+1)th half
switching cycle.

In this analysis, P̂(k) and P̂(k+1) are defined as
the perturbation vectors at the steady state turn-on
instants of transistors T1 and T2, respectively, which are
defined as follows:

P̂(k) = [̂{nl(k)v̂nc(k)În0(k)]
T (23)

P̂(k+1) = [̂{nl(k+1)v̂nc(k+1)În0(k+1)]
T: (24)

The perturbation vectors given in (23) and (24)
represent the perturbation responses at the end of
the second half and first half of the switching cycle,
respectively. In another words, the perturbation
responses at the end of the on-time interval of
transistor T1, {̂nL(k+1), v̂nC(k+1) and {̂n0(k) are
defined as the perturbation vector P̂(k+1). Hence,
the perturbation states {̂nL(k) and v̂nC(k) can be
considered as the initial state perturbations at the

beginning of the on-time interval of transistor T1. The
perturbation states {̂nL(t) and v̂nC(t) are continuous
time functions within the given half switching period.
However, only {̂nL(k+1) and v̂nC(k+1) are used
as the updated perturbations for the following half
switching period as shown in Fig. 5. On the other
hand, the perturbations due to input voltage and
output current, v̂ng(t) and {̂n0(t), are considered to be
constant within each half switching period and are
updated only at the end of the half switching period.
This is valid under the assumption that the input and
output filter time constants are large as compared
with the operating switching period Ts. Moreover, the
perturbation vector P̂(k) is assumed to be small enough
so that when applying Taylor series expansion second
and higher order terms will be neglected as is shown in
the next section.
Two sets of discrete state equations can be obtained

geometrically; one from the trajectory in even portion
of the switching period and the other in the odd half
switching period. These sets of state equations can
be represented as two vector-matrix discrete state
equations having different coefficient matrices. Since
the steady state trajectory is symmetrical about the
origin, special transformation on the perturbed state
variables can be applied to both sets of equations to
obtain a closed-form vector-matrix state equation which
is valid in any half switching period. Consequently,
small signal frequency responses can be calculated
from the closed-form state equation.
The perturbation responses {̂nL(k+1) and v̂nC(k+

1) are derived by using the geometry of the state-plane
diagram and the application of Taylor series expansion.
These solutions can then be used to obtain the
perturbation response {̂n0(k+1) from the output
equation which is derived from the circuit topology as
shown in (25). Due to the presence of the full-bridge
rectifier at the output circuit of the PRC-LCC, the
output equation i0(t) is given by

L0
di0
dt
= jvcp(t)j ¡ i0R0: (25)

From (25) and the state-plane diagram, the discrete
model for the kth half switching cycle, which is located
at the first half of the switching cycle, can be expressed
as follows,

inl(k+1) = I
l
n0(k) +Vnm2 sin(2¼+ μ4) (26)

vnc(k+1) = vng(k) +Vnm2 cos(2¼+ μ4) (27)

I0n0(k+1) = I
0
n0(k) +

Z0
!0L0

"
1¡
μ
!0s
!0

¶2#2

£
μ

¼

fns(k)
¡ 2¯1

¶
¡ 2 L

L0

"
1¡
μ
!0s
!0

¶2#2

£ Vnc(k)
I0n0(k)

¡ ¼R0I
0
n0(k)

L0!0fns(k)
: (28)

706 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 32, NO. 2 APRIL 1996



In order to find a complete discrete state model that
applies for both the first and second half switching
cycles, new state variables need to be defined [21]
in terms of the absolute values of the converter state
variables. Hence, a closed-form solution for the upper
and lower switching cycles can be obtained. It is clear
from the state-plane diagram shown in Fig. 5 that the
absolute values of the state variables must be used as
follows:

y(k) = jinl(k)j= inl(k)
x(k) = jVnc(k)j=¡vnc(k)

y(k+1) = jinl(k+1)j=¡inl(k+1)
x(k+1) = jvnc(k+1)j= vnc(k+1):

Based on these new variables, the perturbation vectors
P(k) and P(k+1) may redefined as shown in (29) and
(30), respectively,

Q(k) = PT(k)

2641 0 0

0 ¡1 0

0 0 1

375
= [y(k) x(k) I 0n0(k)] (29)

Q(k+1) = PT(k+1)

2641 0 0

0 ¡1 0

0 0 1

375
= [y(k+1) x(k+1) I 0n0(k+1)]: (30)

By applying the Taylor series expansion into the
steady state discrete model described by (26)—(28)
and neglecting the higher order terms, we obtain the
responses for ŷ(k+1), x̂(k+1), and În0(k+1) as
shown in (31), (32), and (33), respectively,

ŷ(k+1) =
@F1
@y(k)

ŷ(k) +
@F1
@x(k)

x̂(k)+
@F1
@I0n0(k)

Î0n0(k)

+
@F1
@fns(k)

f̂ns(k)+
@F1

@Vvg(k)
V̂ng(k) (31)

x̂(k+1) =
@F2
@y(k)

ŷ(k) +
@F2
@x(k)

x̂(k)+
@F2
@I0n0(k)

Î0n0(k)

+
@F2
@fns(k)

f̂ns(k)+
@F2

@Vvg(k)
V̂ng(k) (32)

Î0n0(k+1) =
@F3
@y(k)

ŷ(k) +
@F3
@x(k)

x̂(k)+
@F3
@I0n0(k)

Î0n0(k)

+
@F3
@fns(k)

f̂ns(k)+
@F3

@Vvg(k)
V̂ng(k): (33)

The partial derivatives shown in (31)—(33) are derived
in the Appendix. In a more compact form, (31)—(33)
may be represented as follows,

Q(k+1) =AQ(k) +Bf̂ns(k)+CV̂ng(k) (34)

where

A =

264a11 a12 a13

a21 a22 a23

a31 a32 a33

375 , B=

264b1b2
b3

375 , C=

264c1c2
c3

375 :
The coefficients of matrices A, B, and C are given in
the Appendix.
To find the small signal frequency response of

the converter, the discrete small signal model of (34)
needs to be represented in the frequency domain using
z-transformation as shown in (35),

Q(z) = (zI¡A)¡1Bf̂ns(z) + (zI¡A)¡1CV̂ng(z):
(35)

The line-to-output transfer function in the z-domain
can be obtained by letting f̂sn(z) be zero in (35) to
obtain

H1(s) =
V̂n0(z)

V̂ng(z)
=

26664 Qp

1¡
μ
!0s
!0

¶2
37775[0 0 1][zI¡A]¡1C

(36)

where Qp is the quality factor defined by,

Qp =
R0
Z0
: (37)

Similarly, the control-to-output transfer function in the
z-domain can be obtained by setting V̂ng(z) to zero in
(35) and using normalized factor as shown in (38),

H2(s) =
V̂n0(z)

f̂sn(z)
=

26664 Qp

1¡
μ
!0s
!0

¶2
37775[0 0 1][zI¡A]¡1B:

(38)

The Bode plots, both magnitude and phase, of
the line-to-output transfer function H1(s), and the
control-to-output transfer function H2(s), based on (36)
and (38), are shown in Figs. 6 and 7, respectively.

IV. SIMULATION RESULTS

By using the Pspice simulation program, the
frequency responses for both transfer functions
are obtained to verify the theoretical work. Under
small signal perturbations, the driving source in the
equivalent circuit is amplitude modulated signal for the
line-to-output response and frequency modulated signal
for the control-to-output response.

A. Line-to-Output Frequency Response

The setup for the line-to-output response is
simple as shown in the simulated circuit of Fig. 8. The
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Fig. 6. Line-to-output frequency response. Theoretical results: solid line. Simulated results: broken line.

Fig. 7. Control-to-output frequency response. Theoretical results: solid line. Simulated results: broken line.

converter values are based on a design example for the
following values:

DC input voltage Vg = 10 V

Load current I0 = 5 A

Output voltage V0 = 15 V

Switching frequency fs = 100 kHz

Capacitor ratio Cp=Cs = 0:5

The converter component values are given as follows:

R0 = 3 −, L0 = 20 mH, L= 3:1252 ¹H,

Cp = 1:63 ¹, Cs = 1:63 ¹:

Source vA(t) is a 50% duty ratio square wave signal
with switching frequency of 100 kHz and amplitudes
of §10 V. Source vF(t) generates the small signal

Fig. 8. Simulated circuit for line-to-output response.

perturbation with dc offset of 10 V (vF(t) = 10+
sin(2¼fmt)), where fm is the small signal frequency
between 10 Hz and 100 kHz. Source vE(t) is a
dependent signal which generates the square wave
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Fig. 9. Simulated waveforms for 4 kHz perturbation signal for
Fig. 8. v(1): input (reference) voltage. v(5,3): output voltage.

Fig. 10. Simulated circuit for control-to-output response.

amplitude modulated signal with peak amplitude
of 10 V (vE(t) = 0:1vF(t)vA(t)). Fig. 9 shows the
output response at perturbation signal of 4 kHz. The
simulation results for the line-to-output frequency
response is shown in Fig. 6.

B. Control-to-Output Frequency Response

The simulated circuit for the control-to-output
response is shown in Fig. 10 with the same converter
components given in Fig. 9. In Fig. 10, the source
vA(t) is frequency modulated signal, vF(t) is used as a
small signal reference source, and vE(t) is a dependent
source that generates the square wave single frequency
modulated signal. These sources are defined as follows.
Source A: vA(t) = A1 sin[2¼fct+B sin(2¼fmt) where

A1 500 V,

fc 100 kHz (switching frequency),

fm Small signal frequency (10 Hz< fm <

100 kHz),

¢f 1:0%fc (switching frequency deviation),

B Modulation index (B =¢f=fm):

Source F: vF(t) = A2 cos(2¼fmt) where

A2 0:05 V (small signal amplitude),

fm Perturbation frequency (10 Hz< fm <

100 kHz):

Fig. 11. Simulated waveforms for 10 kHz perturbation signal for
Fig. 10. v(6): input (reference) voltage. v(5,3): output voltage.

Source E: vE(t) = Vz(t) where the zener voltages of
the diodes are set to 10 V.
Fig. 11 shows the output response due to the

control frequency perturbation at 10 kHz. The
simulation results are also plotted in Fig. 7. Theses
results show that the frequency responses from both
the theory and simulation are in good agreement,
especially at low frequencies.

V. CONCLUSION

The small signal analysis for the LCC-PRC
operating in the CCM has been presented. The
closed form solution of the small signal response can
be obtained from the state-plane diagram with the
application of Taylor series expansion. Two related
transfer functions under line and control perturbations
were derived: line-to-output and control-to-output
transfer functions. Using z-transformation, frequency
responses for these two transfer functions were
derived. Finally, simulated results for the magnitude
and phase responses of the transfer functions were
reported and compared to verify the theoretical
approach. It was shown that the simulated results
are in good agreement with the theoretical results,
especially at low frequencies. Since accurate knowledge
of the transfer function is more critical close to the
cross-over frequency (i.e., for magnitudes close to one),
the relatively high error at high frequencies poses no
problems.

APPENDIX

A. Derivation of Partial Derivatives for (32)

The coefficients of matrices A, B, and C associated
with ŷ(k+1):

@F1
@y(k)

= a11 =¡
·
@Vnm2
@y(k)

sinμ4 +Vnm2 cosμ4

£
μ
@μ2
@y(k)

¡ @μ1
@y(k)

+
@μ3
@y(k)

¶¸
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@F1
@x(k)

= a12 =¡
·
@Vnm2
@x(k)

sinμ4 +Vnm2 cosμ4

£
μ
@μ2
@x(k)

¡ @μ1
@x(k)

+
@μ3
@x(k)

¶¸
@F1
@In0(k)

= a13 =¡
·
1+

@Vnm2
@I 0n0(k)

sinμ4 +Vnm2 cosμ4

£
μ

@μ2
@I0n0(k)

¡ @μ1
@I 0n0(k)

+
@μ3
@I0n0(k)

¶¸
@F1
@fns(k)

= b1 =¡Vnm2 cosμ4
μ
¼

F2ns

¶
@F1

@Vng(k)
= c1 =¡

"
@Vnm2
@Vng(k)

sinμ4 +Vnm2 cosμ4

£
μ

@μ2
@Vng(k)

¡ @μ1
@Vng(k)

+
@μ3

@Vng(k)

¶¸
:

B. Derivation of Partial Derivatives for (33)

The coefficients of matrices A, B, and C associated
with x̂(k+1):

@F2
@y(k)

= a21 =
@Vnm2
@y(k)

cosμ4

¡Vnm2 sinμ4
³
@μ2
@y(k)

¡ @μ1
@y(k)

+
@μ3
@y(k)

´
@F2
@x(k)

= a22 =
@Vnm2
@x(k)

cosμ4

¡Vnm2 sinμ4
³
@μ2
@x(k)

¡ @μ1
@x(k)

+
@μ3
@x(k)

´
@F2
@In0(k)

= a23 =
@Vnm2
@I0
n0(k)

cosμ4

¡Vnm2 sinμ4
μ

@μ2
@I0
n0(k)

¡ @μ1
@I0
n0(k)

+
@μ3

@I0
n0(k)

¶
@F2
@fns(k)

= b2 =¡Vnm2 sinμ4
μ
¼

F2ns

¶
@F2

@Vng(k)
= c2 = 1+

@Vnm2
@Vng(k)

cosμ4

¡Vnm2 sinμ4
μ

@μ2
@Vng(k)

¡ @μ1
@Vng(k)

+
@μ3

@Vng(k)

¶
:

C. Derivation of Partial Derivatives for (34)

The coefficients of matrices A, B, and C associated
with Î0n0(k+1):

@F3
@y(k)

= a31 =¡
2Z0
!0L0

"
1¡
μ
!0s
!0

¶2#2³
@μ2
@y(k)

¡ @μ1
@y(k)

´

@F3
@x(k)

= a32 =¡
2Z0
!0L0

"
1¡
μ
!0s
!0

¶2#2³
@μ2
@x(k)

¡ @μ1
@x(k)

´

+
2L1
L0

"
1¡
μ
!0s
!0

¶2#2
1
I0
n0
(k)

@F3
@I0
n0(k)

= a33 = 1¡
2Z0
!0L0

"
1¡
μ
!0s
!0

¶2#2μ
@μ2

@I0
n0(k)

¡ @μ1
@I0
n0(k)

¶

¡ 2L1
L0

"
1¡
μ
!0s
!0

¶2#2
x(k)

I20
n0(k)

¡ ¼R0
!0L0Fsn

@F3
@Vng(k)

= b3 =¡
Z0
!0L0

"
1¡
μ
!0s
!0

¶2#2
¼

F2ns
+
¼R0I

0
n0

!0L0F
2
ns

@F3
@Vng(k)

= c3 =¡
Z0
!0L0

"
1¡
μ
!0s
!0

¶2#2μ
@μ2

@Vng(k)
¡ @μ1
@Vng(k)

¶
:

D. Other Parameters

Below are other parameters relevant for the
derivation of the coefficients of (32) and (33).
1) Partial Derivatives for Paramter Vnm2:

@Vnm2
@y(k)

=
y(k)+ I 0n0(k)

Vnm2

@Vnm2
@x(k)

=
x(k)¡ 1
Vnm2

@Vnm2
@I0n0(k)

=
y(k)+ I 0n0(k)

Vnm2

@Vnm2
@Vng(k)

=
x(k)+1
Vnm2

:

2) Partial Derivatives for Parameter μ1:

@μ1
@y(k)

=

μ
x(k)
I0n0(k)

+ I 0n0(k)
¶
Hxy(k)+ I 0n0(k))

V2nm1

s
V2nm1¡

μ
x(k)
I0n0(k)

+ I0n0(k)
¶2

@μ1
@x(k)

=

μ
x(k)
I0n0(k)

+ I 0n0(k)
¶
(x(k)+1)I0n0(k)¡V2nm1

V2nm1I
0
n0(k)

s
V2nm1¡

μ
x(k)
I 0n0(k)

+ I0n0(k)
¶2

@μ1
@Vng(k)

=

μ
x(k)
I0n0(k)

+ I 0n0(k)
¶
(x(k)+1)

V2nm1

s
V2nm1¡

μ
x(k)
I 0n0(k)

+ I0n0(k)
¶2
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@μ1
@I0n0(k)

=

μ
x(k)
I0n0(k)

+ I0n0(k)
¶·μ

y(k) +
x2(k)
I30n0(k)

¶¸
V2nm1

s
V2nm1¡

μ
x(k)
I0n0(k)

+ I 0n0(k)
¶2

¡

μ
1¡ x(k)

I20n0(k)

¶μ
V2nm1¡

μ
x(k)
I20n0(k)

¶¶
V2nm1

s
V2nm1¡

μ
x(k)
I0n0(k)

+ I0n0(k)
¶2 :

3) Partial Derivatives for Parameter μ2:

@μ2
@y(k)

=
x(k)+1
V2nm1

@μ2
@x(k)

=
¡y(k)¡ I 0n0(k)

V2nm1

@μ2
@y(k)

=
x(k)+1
V2nm1

@μ2
@x(k)

=
¡y(k)¡ I 0n0(k)

V2nm1
:

4) Partial Derivatives for Parameter μ3:

@μ3
@y(k)

=

μ
x(k)
I0
n0(k)

¡ I0n0(k)
¶
(y(k) + I0n0(k))

V2
nm2

s
V2
nm1¡

μ
x(k)
I0
n0(k)

+ I0
n0(k)

¶2

@μ3
@x(k)

=μ
x(k)
I0
n0(k)

¡ I0n0(k)
¶
(x(k) +1)I0n0(k)¡V2nm1 +2x(k) +2I20n0(k)

V2
nm2I

0
n0(k)

s
V2
nm1¡

μ
x(k)
I0
n0(k)

+ I0
n0(k)

¶2

@μ3
@I0
n0(k)

=

μ
x(k)

I20
n0(k)

+1

¶"
V2nm1¡

μ
x(k)
I0
n0(k)

+ I0n0(k)

¶2
#

V2
nm2

s
V2
nm1¡

μ
x(k)
I0
n0(k)

+ I0
n0(k)

¶2

+

μ
x(k)
I0
n0(k)

¡ I0n0(k)
¶μ

y(k) +
x2(k)

I30
n0(k)

¶
V2
nm2

s
V2
nm1¡

μ
x(k)
I0
n0(k)

+ I0
n0(k)

¶2

@μ3
@Vng(k)

=

μ
x(k)
I0
n0(k)

¡ I0n0(k)
¶
(x(k)+ 1)

V2
nm2

s
V2
nm1¡

μ
x(k)
I0
n0(k)

+ I0
n0(k)

¶2
:
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