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Abstract 

An apparent paradox in classical statistical physics is the mech- 
anism by which conservative. time-reversible microscopic dy- 
namics, can pive rise to seemi,ngly dissipative behavior. In this 
paper we use system theoretic mols to show that dissipation can 
arise as an anifact of incomplete observations over a finite hori- 
zon. In addition, this approach allows us to obtain finile-time. 
low order, approximations of systems with moderate size. and to 

establish how the approach to the thermodynamic limit depends 
on the different physical parameters. 

1 Introduction and Motivation 

Loschmidt's classic paradox [5] arises in the con- 
text of Statistical Mechanics and can be stated as 
follows: how can the dynamics of an ensemble 
of particles governed by time-reversible, conserva- 
tive laws give rise to seemingly dissipative, irre- 
versible macroscopic behavior? The essential chal- 
lenge is to reconcile the emergence of an accurate, 
phenomenological dissipative description from the 
underlying conservative microscopic dynamics. A 
standard illustration of this phenomenon in either 
classical or quantum mechanics is the model of an 
oscillator coupled to a thermal bath shown schemat- 
ically in Figure 1, (see for example [3, 91). This is 
the model system used by Caldeira and Leggett to 
study the dephasing effects of thermal coupling in 
quantum mechanics [I]. 

In this model, a harmonic oscillator is linearly cou- 
pled to a thermal bath-itself modelled as a large 
collection of harmonic modes with a distribution of 
frequencies, leading to the Hamiltonian: 

The generality of (1) resides in the freedom to 

Figure 1: Model of a harmonic oscillator in a thermal 
bath. 

choose the bath frequencies w; and the coupling 
strengths gi. Letting mi = 1 without loss of gen- 
erality, one can consider for instance an Ohmic 
bath with frequencies evenly spaced in the interval 
(0, wc] and constant couplings g," = 4m./w,/nN. 
In this case, standard results [3, 91 indicate that 
the observed oscillator will behave like a damped 
oscillator with frequency Q and damping rate 2 7  
in the limit N,w,  + CO. However, we empha- 
size that most approximation techniques used in the 
Physics literature to resolve Loschmidt's paradox 
are ad hoc, with no approximation error bounds, and 
often requiring formal limits with some infinite scal- 
ing. They also lack an algorithmic content and thus 
provide just a qualitative description of the appear- 
ance of dissipation from microscopic Hamiltonian 
dynamics. 

In contrast, our approach is based on control- 
theoretical tools. By considering the input-output 
system associated with (l), our problem can then 
be viewed as that of obtaining low-order approx- 
imations, over a finite time horizon, of a high- 
dimensional LTI operator. Indeed, as suggested by 
the impulse response (dashed line in Figure 3), the 
observed dynamics of the system at early times may 
be very close to that of a damped oscillator even for 
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a moderate number of bath modes. 

Note, however, that the operator all its poles on the 
jw-axis, and thus standard infinite horizon model 
reduction techniques cannot be directly applied. To 
circumvent this difficulty, we use recent results [81 
that allow model reduction over finite horizons of 
not necessarily stable LTI systems by recasting the 
problem into a Hankel norm model reduction form. 
We illustrate the potential of this approach through 
the analysis of different frequency distributions for 
the bath oscillators, and of situations far from the 
thermodynamic limit. 

2 Finite Horizon Model Reduction of Unstable 
Systems 

In this section we recall, for ease of reference, some 
recent results showing that finite horizon model re- 
duction of unstable systems can be accomplished 
through a modified version of Glover's well-known 
balanced truncation algorithm. 

2.1 Notation and Preliminaries 
Cm denotes the Lebesgue space of complex val- 
ued matrix functions essentially bounded on the 
j w  axis, equipped with the norm \lG(s)llm = 
esssup,?(G(jw)), where B is the largest singu- 
lar value. 'H, denotes the subspace of functions 
in C, with a bounded analytic continuation in 
R(s )  2 0. &IO, TI denotes the space of vector 
valued real functions essentially bounded in the in- 
terval [ o , ~ ] ,  equipped with &e norm l I f I I ~ 2 , 0 , T l  = Jc f'(t)f(t)dt. Let 1: represent the space of LTI, 
causal, bounded operators in C2[0,T]. The induced 
norm of an operator M E C is given by 

A standard result states that the &[O, a)-induced 
norm of a LTI stable operator G coincides 
with the peak value of its frequency response: 
llG\lczp,m),ind = llGllm, 
Let G: C:2[0,00) + Cz[O,m) a be a stable, 
finite dimensional operator with McMillan de- 
gree n. Its associated Hankel operator [71 
rG:C2(-m,0] -t C2[0, 03) can be thought off 
as mapping past inputs in (-w,O] to the corre- 
sponding output in [0, CO). Let I?;: &[O, 00) -+ 

&-CO, 01 denote the adjoint operator of Tc. 
The Hankel singular values up of G, defined as 

the square roots of the eigenvalues of the operator 
r;rG, coincide with the eigenvalues of the pmd- 
uct of the controllability and observability Grami- 
ans of G (see for instance [7], Chapter 6).  More- 
over, a rank T approximation G, to G can be 
obtained by considering a balanced realization of 
G(s), and discarding the states associated with the 
smallest n - T Hankel singular values up,  i = r + 
1 , .  , , , n. The corresponding approximation error is 
then bounded [41 by I/G - G& 5 2 c:=r+l 08. 
2.2 Model Reduction of Non-Hurwitz Systems 
The following theorem is key to the developments 
in the paper. It relates the &[O, TI-induced norm of 
a finite dimensional LTI operator G to the &[O, m)- 
induced norm (and thus to the 'H, norm) of G,, a 
shifted version of G. 

Theorem 1 Considera strictly pmpe,: finite dinien- 
sional, LTI, (not necessarily stable system) G with 

state space realization G = [#) . Iftkere 

exists a > 0 such rhnt G,= [ A h a ; )  B ) is 

stable, with l/Gnllm < y. tken%tkefollowhg biurzd 
holds: 

I /G\l~cz,o,~,. ind <: yeaT. ( 2 )  

Proof: See [SI 

Straightforward application of this result leads IO 
the following algorithm for finite horizon model re- 
duction of non-Hunvitz systems: 

Algorithm 1 

0.- Take as inpurs a state space realization 
G ( s )  = C(s1- A)-'B + D, anda number 
a E R+ suck rkur G(s + a)  E '&. 

1.- Find a stable reduced order approximation ~. 

G , ,  I (*) to the skifed system C, D, 

we use b&~nced trhcatibns 141, the approx- 
imation ermr is bounded by 

n 

llG. - GV& 5 2  2 .Ei, (3) 

where at, denotes the Hankel singular wl- 
ues ofGn (ordered in decreasing order). 

i=r+l 
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2.- Use the system G, A Pets 
, I . ,  

as an approximation to G in the interval 
[0, TI. From Theorem I it follows that 

n 

Remark 1 From equation (4) it follows that the 
proposed algorithm gives ermr bounds comparable 
to those of the stable LTI case when a - 1/T. 

3 Finite Horizon Approximations and the 
Appearance of Dissipation 

One of our main conclusions is that, from a systems 
theoretic viewpoint, the origin of dissipation is not 
particularly paradoxical: it arises as a parsimonious 
description of incomplete observations of the dy- 
namics over a finite horizon. The mathematical ba- 
sis underlying this general statement is the empirical 
observation that large Hamiltonian systems oftenre- 
sult in a state space model with strongly observable 
and strongly controllable subspaces that are nearly 
orthogonal. Thus, in a systematic search for simple 
descriptions of these systems, dissipative dynamics 
will usually arise, unless conservation of energy is 
artificially enforced. Indeed, conservative descrip- 
tions will typically be of higher order. 

In this section we use the canonical conpled- 
oscillator heat bath model as a prototype to illus- 
trate our ideas. Viewed as an input-output system, 
the Hamiltonian (1) leads to the following LTI state- 
space realization: 

4 = Plm 
P = 
4; = Pi 
pi = -w,2qi +giwiq 

-ma% + .(t) + E,"=, si (wiqi - gtq) 

Y = P  
(5)  

As seen in Fig. I, the variables q and p describe, 
respectively, the position and momentum of a har- 
monic oscillator of frequency Sl subject to an ex- 
ternal driving force u(t), and linearly coupled to a 
thermal bath modelled by oscillators with position 
and momenta qi and pi .  This system is sufficiently 
general in that a model of this form can be obtained 
from any linear bath by finding a canonical transfor- 
mation that diagonalizes the bath Hamiltonian. The 
standard assumptions in the Physics literature, com- 
monly referred to as an Ohmic bath, are: 

9, 2 lm = Iw,y/?rN, wi = i w J N  (6) 

i.e, constant couplings and frequencies evenly dis- 
tributed up to acut-off wc + co. 

3.1 The Classical Physics Viewpoint: Dissipa- 
tion and the Thermodynamic Limit 
Some insight may be obtained by means of a for- 
mal solution to system (5) that leads to an integro- 
differential equation for the dynamics of the oh- 
served oscillator [91. It is cumbersome but straight- 
forward to show that 

p = -mSl*q + U ( t )  + F ( t )  
- s , t ( t  - t ' )p( t ' )dt '  

K ( t )  = c L , ( g ? / m )  CoS(W;t) 

F ( t )  = ci [SiW, ( d o )  - $ d o ) )  coswit 
+ gip(0) sin wit] , 

(7) 
where the first tern corresponds to the harmonic os- 
cillation; the second to the external drive; and the 
third to a quasi-random forcing that results from the 
initial positions and momenta of the bath modes. 

The properties of the fourth and last term depend 
on the integration kernel ~ ( t ) .  Under the Ohmic as- 
sumptions (6), and in the limit where the gap be- 
tween the frequencies Aw = w,/N + 0, one gets 
t ( t )  + .iyb(t), where 6 ( t )  is the Dxac delta (gener- 
alized) function. Now Eq. (7)  formally leads to the 
simple expression: 

p = -mS22q + u(t)  + F ( t )  - 2 y p .  (8) 

Although we will not address this question in de- 
tail, it is not hard to show that if the initial positions 
and momenta of the bath oscillators are thermally 
distributed at some temperature r then the sharply 
peaked behavior of the integration kernel in Eq. (7) 
also guarantees that 

( F ( t ) )  = 0, (F(t)F(t ' ) )  = I r n k ~ r y b ( t  - t'), 

where ks is Boltzmann's constant. Hence, from an 
input-output standpoint, F may be taken to be white 
noise, and the observed dynamics of the (infinite- 
dimensional) oscillator system is described by the 
Langevin equation of a damped harmonic oscillator 
forced by Brownian motion. This intimate connec- 
tion between the magnitude of the fluctuations in the 
system and its rate of return to equilibrium is termed 
the fluctuation-dissipation theorem [6]. 

We emphasize that this formal procedure sheds little 
light for systems with a finite number of oscillators, 
or with a non-zero gap between bath frequencies. 
Note also that the resulting equation does not con- 
serve energy: if U = 0 ,  energy leaves the system 
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oscillator for !he bath and never returns. Clearly, for 
any finite system all of the bath oscillators will even- 
~ d l y  rephase to their original positions and mo- 
menta, and the original energy will return to the sys- 
tem oscillator (see Fig. 3). Thus, for a finite number 
of oscillatoa, the Langevin equation can only be at 
best an approximation valid for a finite time. 

3.2 The Systems Theoretical Viewpoint: Dissi- 
pation as a model reduct2on problem 
In order IO move beyond this framework, we pro- 
ceed along a different path: we obtain reduced ap- 
proximations valid only over a finite horizon for a 
finite number of oscillators, and compare those with 
the limiting model of a damped oscillator. Specif- 
ically, we exploit Algorithm 1 to approximate the 
inpuuoutput behavior of our system by: (i) shifting 
the corresponding transfer function by some a > 0, 
G(s) -+ G(s + a) 2 G,(s); (ii) model-reducmg 
the shifted G., using balanced mncations; and (iii) 
shifting back the resulting reduced model Gcea. The 
error in this procedure is bounded by (3) and (4). 

We have analyzed the finite Ohmic system (5), (6) 
with N modes. The expectation is that, as N and we 
increllse and for a given horizon T,  the system will 
approximate, in rhe Ln[O,T] notm sense, a damped 
oscillator with frequency R and damping rate 2 y. 
This should be evidenced by a Hankel operator with 
only two large singular values, with the sum of the 
rest, and the bund (4), tending to zero. 

Figure 2: Singular values of the Hankel operator 
for the shifted oscillator system with N = 
100,150,2M), 250,350,500 (circles, crosses, 
plus, stars, squares and diamonds, respec- 
tively). The other parameters are R = 1. 
7 = 0.1, a 0: N-- ) j3  andw, U N1". 

Figure 2 shows the Hankek singular values of the 
shifted system G, for several values of N .  AS ex- 
pected, the system has only nvo significmt Hankel 
singular values with the remainjng ones typically or- 
ders of magnitude smaller and tailing off rapidly. 
Surprisingly, this is so even for moderate numbers 
ofosrillaturs. far from the N + 00 limiting behav- 
ior commonly invoked in the Physics literature. In 

essence, this is an algorithmic derivation of the fact 
that, in a rigorous sense, the best model of the dy- 
namics over a finite horizon is a damped oscillator. 
This is corroborated in Fig. 3, which compares the 
impulse responses of the full system ( 5 )  and its 
second order approximation. Indeed, the reduced 
model for these parameters has the state-space real- 
ization: 

and even for this relatively small number of os- 
cilIators (N = 100) the error over a time hon- 
zon T is bounded by IlGco - Gredl/C2(o,q, jnd 5 
0.12eo.1T. 

Our numerics show small approximation errors if 
a N 1/T. This is intuitive: if the horizon T is to 
lead to significant simplification of the dynamics, 
the weighting e-oT should ensure that times t > T 
do not contribute significantly to the nom. Note 
also that dissipative models appear when the hori- 
zon T is smaller than the characteristic recurrence 
time of the system (e.g., t 5 10 in Fig. 3). 

Figure 3: Impulse response af the coupled oscillator 
system (5).(6) with Sa = l , y  = 0.1,N = 
100: w, = 10. The dashed line IS the output 
of the full system. while the solid line cor- 
responds to the second order approximation 
with Q = 0.1 ('I = 10). 

We also investigated the appmximation error of the 
second order reduced models as N, wc and T are 
varied. The physical intuition is that it should be 
possible to consider arbitrady long horizons by in- 
creasing N and wc. Indeed, this is shown numen- 
cally in Figure 4 where we plot the bounds on the 
approximation error as N, T,w, -+ 00 such that 
(w,/Na) + 0 and (awc/Q2) is held constant. 
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Figure 4 Upper bound on the approximation emor as a 
function of the number of oscillators. 

3.3 The Approach to the Limiting Behavior: An- 
alytical Results 
Figure 4 gives numerical evidence that the error in 
replacing the full Ohmic system by a second order 
Langevin equation may be made xbitrarily small. 
As long as some scaling ratios hold, this algorithmic 
result remains robust to changes in the parameters 
of the system: the damping y, the cut-off frequency 
wc, the number of bath modes N, the horizon T ,  and 
the shifting factor a. In fact, our approach offers the 
possibility of unravelling the dependence of the ap- 
proximation error on those parameters analytically. 

To see this, consider the transfer function from mo- 
mentum driving to momentum output (the position 
output case is identical) for the model (5),(6): 

S 
Gco (s) = 

sz + n2 + 27s [% c, sZ+( t : c /N)I ]  ’ 

We must now show that some sequence of oscillator 
models approaches a damped oscillator in the ap- 
propriate limits wc + c q  N t CO, a + 0. Thus, 
Gco(s)  should approach the transfer function 

in the precise sense of a vanishing approximation 
error bound over a finite time horizon. 

In order to use the bound (4), we should establish 
that the ‘H, bound on the relative error vanishes: 

braic manipulations this is equivalent to: 
/I(Gco,, - Gred,a)/G~~,allm + 0. After a b -  

where S = (a  + ju)/wc. Note that this leads 
naturally to a weighred model reduction problem, 
where the weight comes into play because of our in- 
terest in approximating the “closed-loop” behavior 

resulting from the interaction of the oscillator and 
the bath. On the other hand, the classical Physics 
approach is akin to “open-loop” model reduction, 

where the term [:% gz+(i2c,N)z]  is approx- 
imated by 1, or equivalently xi coswit b(t). 
Note that this is a sufficient (but conservative) con- 
dition for ~ ~ G c o  - GredllL210,Tj, ind % 0. 
Using some properties of the digamma function li, 
and its asymptotic expansion, we get 

3 EL, & = coth(nNS) - (nNS)-’ 

= c o t h ( ? i N S ) , - ~ N ~ + $ l n ~ + O ( ~ ) -  

where the last term is bounded by a finite multiple 
of (Na/wJZ. The logarithmic term can be shown 
to have a norm of O(w;’ lu(wc/a)) and it is also 
easy to show that 

+a [?li(l+ N + j N S )  - Q(l+ N - j N S ) ]  

2 exp -ZnNo/w,  
111 - coth(nNS)//, 5 l -ex&znNo,w~)  

< 71-1 (Na/w,)-’ 

i&511rn < r-l ( N a l w J ’ .  

Hence, the dominant term in the approximation er- 
ror is the ratio (wJNa) and if this approaches zero 
then so does the Cz[O, TI-induced norm of the error 
resulting from using the damped oscillator approx- 
imation. (This has an intuitive meaning: the fre- 
quency spacing should be larger than the peak width 
(a = l/T) introduced by the finite horizon.) With 
these scalings the reduced model is shown to con- 
verge to the damped oscillator. 

3.4 Applicability of the Algorithm 
Finally we highlight the methodological advantages 
of algorithmic approximation methods for large, 
possibly Hamiltonian systems. Note that our tech- 
nique needs no modification to be applied to non- 
Ohmic, non-Markovian baths ,or to models which 
are not of the simple form of equation (1). In those 
cases, the description in terms of the memory kernel 
K ( t )  will generally be non,triviaJ even in the limit of 
large number of bath modes. The model reduction 
procedure will typically accommodate this through 
a larger number of state variables for comparable 
pelformance. For the Markovian (Ohmic) system, 
the number of state variables was no greater than 
the number of variables describing the system of in- 
terest; in general, the approximate models will ap- 
propriately retain some chosen degrees of freedom 
of the environment. 

While it is beyond the scope of this article to con- 
sider a broad range of models, we illustrate these 
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points with a simple example of a non-Ohmic bath 
where the results may again be compared to those 
obtainable by existing techniques. Consider the sys- 
tem (1) with 

9 t h  = % r f ( w i ) / ~ N f ( f l )  

The frequency dependence is a function of two new 
parameters W b  and 76, whose meaning becomes 
clear when canying out the formal limiting proce- 
dure to approximate the memory function K ( t )  + 
27e-’bt WS(wbt)/ f (fl). 
In the limit, it is clear that this new bath behaves as 
if it were an oscillator with frequency W b  which de- 
cays at rate ‘yb as it is in turn coupled to an Ohmic 
bath. This suggests that an accurate model should 
require four state variables rather than just two, with 
the extra variables refemng to the effective bath 
oscillator. Indeed, our model reduction algorithm 
finds four significant singular values with the rest 
beiig much smaller. Figure (5) shows the time dy- 
namics of the full non-Ohmic model and of a four- 
dimensional reduced model valid for early times. 
Note how the energy is radiated from the system os- 
cillator and back again, all inside the envelope of an 
overall decay into the environment. In fact, it is to 
capture this non-Markovicity that the extra reduced 
system degrees of freedom are needed. 

I 
B 

Time (Oscillation Periods) 

Figure 5: Same as Fig. 3 for the non-ohmic oscillator 
system (5), (9) with n = 1,y = 0.1, N = 
250, wC = 12,wb = 1, yb = 0.09, a = 0.05. 

4 Conclusions 

In this paper we have shown how system-theoretic 
approximation methods can be systematically ap- 
plied to obtain low order approximations, valid over 
finite intervals, to the collective behavior of the in- 
terconnection of a large number of simpler suhsys- 
terns. These tools were illustrated in the context of 

Loschmidt’s paradox: the seemingly dissipative be- 
havior of a collection of non4issipative oscillators. 
From a model approximation perspective, the origin 
of this dissipation is no particular mystery: it arises 
as a parsimonious description of incomplete obser- 
vations of the dynamics over a finite horizon. Re- 
markably, the algorithmic results presented in this 
paper are robust to changes in the parameters of the 
system ( 5 )  (such as r, we N ) ,  the horizon T and the 
shifting factor a, as long as some general scalimg ra- 
tios hold. Indeed, a key feature of our approach is 
that it offers the possibility of unravelling the de- 
pendence of the approximation error on all of those 
parameters. 

In addition, our approach provides algorithmic tools 
for a more meaningful reinterpretation of experi- 
mental data in terms of data-driven, parsimonious 
reduced models (as opposed to the current fitting of 
data in terms of generalized Markov models). 
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