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Weighted Parzen Windows
for Pattern Classification

Gregory A. Babich and Octavia |. Camps

Abstract—This correspondence introduces the weighted-Parzen-
window classifier. The proposed technique uses a clustering procedure
to find a set of reference vectors and weights which.are used to
approximate the Parzen-window (kernel-estimator) classifier. The
weighted-Parzen-window classifier requires less computation and
storage than the full Parzen-window classifier. Experimental resuits
showed that significant savings could be achieved with only minimal, if
any, error rate degradation for synthetic and real data sets.

Index Terms—Nonparametric classifiers, Parzen-windows, kernel
estimator, clustering, training samples, discriminant analysis, Bayes
error, leave-one-out, holdout.

*

1 INTRODUCTION

WHEN designing a pattern recognition system, nonparametric clas-
sifiers are often used. Nonparametric techniques do not assume a
particular form of density function but usually estimate one. Since
the underlying density of real data rarely. fits common density
models [2], the nonparametric classification approach is a good
choice for practical applications. The well-known Parzen-window
(kernel-estimator) classifier is a popular nonparametric approach
because of its excellent performance and firm theoretical founda-
tion. Unfortunately, the Parzen-window (PW) approach can re-
quire significant computational resources in terms of processing
time and storage. .

Researchers have developed less costly techniques to imple-
ment PW-type classifiers. One approach is to find a subset of a set
of training samples to estimate the PW density. Fukunaga [5] dis-
cusses a procedure in which a nonparametric data reduction tech-
nique is used to split training data into two separate sets by an
iterative swapping scheme that is controlled by an entropy crite-
rion function. By splitting the data, a suitable subset of the training
data may be found and subsequently used for PW classification..
This approach is referred to as the reduced Parzen (RP) classifier [5].
In the case of the RP classifier, the final split is generally depend-
ent on the initial partition [5]. Another approach is to reduce the
size of the training set by clustering. One such procedure, proposed
by West [8], is called collapsing mixtures. In’ this approach, the
training data are clustered to find centers and weights which are
used in a kernel estimator. West suggests monitoring plots of the
marginal distributions during the clustering process so that train-
ing may be terminated when significant changes are detected [8].
Other parsimonious approaches are the binned kernel estimators.
The traditional binned estimator requires a grid of equally spaced
bin centers, which are used in conjunction with available training
data to estimate its density function. The reader is referred to Fan
and Marron [4] for a discussion of binned estimators.
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In -this correspondence, we introduce the weighted-Parzen-
window . (WPW) classification approach Thrs technique uses” a
clustering procedure to find a ‘set of reference vectors and weights

which: are used to approximate the PW classifier. The training -

algorithm is discussed in Section 2: The"WPW technique is most
closely related to the collapsing mixture estimator and the RP clas-
sifier. However, the WPW approach”differs from. the collapsing
mixture approach in that WPW training uses the PW estimate as a
baseline during the training phase, which is terminated when the
distance between the two. estimates exceeds a. threshold. In Sec-
tion 3, experimental results are presented Synthetic and real data
sets-are used to compare theé; WPW, PW and RP classifiers. Sec-
tion 4 gives concluding remarks: -

2 WEIGHTED PARZEN WINDOWS

Classification is often accomplished by discriminant u'mzlyéis, where
separate discriminant functions are used for each class of data. In
this approach, unlabeled samples are given the class label of the
largest valued discriminant function [2]. In the present correspon-
dence, each class’s discriminant function is the estimated density
funiction for that class weighted by thé*corresponding a priori
probability. Therefore, without loss of generality, the following
discussion treats the case of a single class.

Given a set of # d-dimensional training samples X =
{x,, %, .., X}, the Parzen-window (PW) den31ty estimate is given by

[2], 51, 7], | |
5 n _}__ )‘(v_"xk
p"(")”kzﬂnh”[»’? )

where ¢() is the window function and % is the window width pa-
rameter. Parzen showed that p,(x) converges to the true density if
“@(-)yand Tt are properly selected; and the distribution of x is con-
tinuous-[2], [5], [7]. The window function is required to be a finite-
valued non-negative density function where

[olyyy =1,
and the width parameter is required to bea fllnction of n such that
lim h(n). =
HT)N .
and
liv #h%(n) = <.
P oo R
A mote general form of p,(x) is given'by
. »

1) = Sl )

where H is a d-by-d diagonal miatrix of width parameters and | - | is
the determinant. This approach allows for smoothing in each of the d
directions: Other forms of H are possible and are mentioned below.

The weighted-Parzen-window (WPW) technique approximates
(2.1) using fewer samples: A clustering procédure is used to find a
set of reference vectors (cluster centers)and window weighits. Given
a set of reference vectors R = {r,, 1,, ..., 1}, m < n, the WPW ap-
proximation to (2.1) is given by }

@1

n
w,"

nIH] (2.2)

o765
where w, is the kth window weight and is-equal to the number of
original training samples that were collapsed into 1. .

Fig. 1 gives a specific training algorithm, although many varia-
tions are possible. The WPW training algorithm finds. a‘set of ref-
erence vectors by combining the two-samiples that are closest to
each other for each training step. Whenever two samplesiare com-
bined in'this manner, they forever beconie members of the same

P(x)=

=1

cluster; this is known as hzemrchlcal clustermg [‘
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Flg 1. WPW training algomhm for a smgle class of data "

The WPW approach has several attractlve qual

1) The WPW training: algonthm tnakes use of rzgglomemtwe thi-
erarchical clustering [1];[2]. This form 6f clustering has been
well studled and efflcrent algorlthms exist: for 1ts 1mple-,

(reduction) can be exammed This app: £

ing our expenments' toald in the selectionofie;. :
3)- Consider the case of th tandard normal Galissia wmdow ;
o > 2,and H = 18 vhere F is the w1dth parameter and :

ZO *is the symmetric square-root'of the emp1r1ca1 covariance
matrix. In this case,since’e,,, is large, the training algotithn
will terminate with a single reference vector: whichis the
sample mean, [, of the training set.-Now m =1, w, =7}’
r, = ji , which when' substituted intd (2.2) results ina Gaus—
sian density function with an h-dependent-covariance ma-
trix. By using a suitable method to select h=1, 2y becomes(
px). ~ NIfi, 1. Therefore, ‘the WPW procedure can” be.
viewed ‘as a continuous ‘bridge between the fully non-
parametric PW classifier (e, = 0) and the" fully parametnc

Gaussian classifier (e > 2) ' :

max

3 EXPERIMENTAL RESULTS

Expenments were conducted w1’th synthetic-and real data to show
the usefulness of the weighted-Parzen-window (WPW) approdch.
In all cases, standard nor:mal ‘Gaussian ‘window: functions ‘were”
used. The value of H was erther equial to hZOSOr hI, where I'is the
d-by-d identity matrix. Also, the a- priori probabrhtres were set
equal for each class. Selection of 1 was accomiplished by varying it
over several orders of magnitude, finding the leave-oné-out. (LV):



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 18, NO. 5, MAY 1996

error rate of the Parzen-window (PW) classifier, and choosing the
value h,, corresponding to the minimum [6]. This value was used
for designing both the PW and WPW classifiers. Selection of e,,, is
discussed below. In the following sections N and M are used to
denote the total number of training samples and reference vectors
for all classes, respectively.

A two class bivariate data set was synthesized to demonstrate
the WPW approach. The data were first drawn from a standard
normal distribution, and then various mean vectors were added to
the data so that the first class is bimodal while the second is uni-
modal, centered between the modes of the first. The Bayes error
rate was estimated by using the optimal classifier to label 10,000
samples from each class. The error rate was determined to be 5.4%.
To facilitate graphing, the data set’s size was kept moderate with
200 total samples. Fig. 2a shows the data with the Bayes-optimal
decision boundaries. Fig. 2b shows the LV error rate for the PW
classifier as a function of the width parameter. From this curve f,,
was selected as 1.0. The effect of e, was studied by varying it from
0 to 2 in increments of 0.01. For each value of e,,,,, the LV error rate
for the WPW classifier and the average number of total reference
vectors, M, was recorded. (Note that N = 200 classifiers were de-
signed with N -1 training samples for each value of ¢,,, so the
maximum value of M is 199.) Fig. 2c shows the LV error rate as a
function of the average number of reference vectors and the corre-
sponding error parameters, 0 <e,,, <0.5. Note that a considerable
reduction was achieved without introducing significant classifica-
tion error. Furthermore, the curves of Fig.2c describe well the
WPW classifier; i.e., for any desired error parameter, ¢,,,, we know
the average number of reference vectors, M, and the LV error
rate. Fig. 2d shows the WPW weighted reference vectors and the
decision boundaries that resulted when e, = 0.1. These decision
boundaries approximate the Bayes boundaries and are very simi-
lar to the PW boundaries (not shown).
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Fig. 2. Results of the WPW algorithm for éynthetic data.
)
To compare the WPW approach with the reduced Parzen clas-
sifier, the experiment of reference [5], p. 555, was replicated. This
experiment used a synthetic, two-class, eight-dimensional non-
normal data set with a known Bayes error rate of 7.5% [5]. The
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experiment demonstrates how the holdout error rate [5] varies as
the size of the classifier is reduced. (For the WPW, this procedure
required modification of the training algorithm so that it would
terminate for a particular value of m.) Fig. 3 shows the results for
the WPW classifier. Note that the error curve is the average of the
10 trials and that the error bars indicate one standard deviation.
These results are comparable to those of the reduced Parzen classi-
fier [5], p. 556, except that improved performance is noted in the
case of the WPW for values of 1< m < 6. (Fig. 3 has been drawn in
the same manner as the figure shown in [5] p. 556, to facilitate
visual comparison.)
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Fig. 3. Classification error as a function of m for the WPW classifier
and non-normal data.

Experiments were conducted with three real data sets. The first
two data sets, Iris and IMOX, have been widely referenced in the
literature. The Iris data are four kinds of measurements for three
classes of iris with 50 samples in each class [3]. The IMOX data
consists. of eight measurements for 48 handwritten characters in
each class which are I, M, O, and X [6]. The third data set used was
extracted from the acoustic signature of a laser-welder. A single
feature is used for two classes of weld which correspond to full-
and partial- penetration. This data set is large, with 1,007 training
samples for the two classes. The following procedure was used to
select e,,, for each of the real data sets. First, ¢,,, was selected large,
greater than two, so that the WPW training algorithm would ter-
minate with one reference vector. During training, e and the clus-
ter indices were recorded for every training step. Then, e was
plotted as a function of the number of reference vectors for each
class (Fig. 4). The curve was then used to select a suitable value of
e,... For example, in the case of the IMOX and Iris data, we see that
the curves are relatively level for e < 0.1, which indicates that a
suitable value for e,,, would be approximately 0.1. Similarly, in the
case of the laser data, a suitable value of e, would also be ap-
proximately 0.1. However, in this case, the reduction of the train-
ing set is much more dramatic. Once ¢,,, is selected, the WPW clas-
sifier can easily be implemented by using the cluster indices that
were ‘previously stored. Using Fig. 4, several values of e, were
selected. Table 1 shows the results for the given values of e, and
h,,. For each data set, the PW and WPW leave-one-out error rates
are shown. Also, the storage reduction is shown in the case of the -
WPW. Again, note that M <N -1 for N total training samples. In
all cases shown in Table 1, significant reduction is observed, and in
most cases, there is little or no change in error rate. Note that the
WPW laser-weld classifier was designed with less than 2.0% of the
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original training samples while maintaining the same error rate as

the PW classifier.
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Fig. 4. Error (e) as a function of the training level for three sets of real
data. s :

whose thoughtful comments helped. to gre, tly

+ TABLE 1
* EXPERIMENTAL RESULTS FOR THE REAL DATA
Data- | 4 PW e WPW ave M
Lot Error a1 Error N1
lrig+ ) 1.30 0.0133 0.10 0.0133 0.402-
0:20 ° 0.0200 0.290
. i 0:30 0.0200 0.214
IMOX- 1.05 0.0521 ‘0,10 <0.0521 0.724
| 020 0.0521 0.562
3 - 0.30 0.0573 0.494
Laser +|- 0.70 | 0.0745 0.05 0.0745 0.019
0.10 0.0745 0.015
0.15 0.0735 0.013

Error rates forind by leave-one-out technigue.

4 CONCLUSION

This .- correspondence . introduced the  .weighted-Parzen-window
(WPW) classification approach.:This technique uses a clustering
procedure to find a smaller set of reference vectors and weights
which are used to approximate the Parzen-window (PW) classifier.
The WPW -approach is used to reducé.the-computational burden
and-storage requirements for the classifier. The WPW.procedure
uses. the PW estimate as a baseline during the -training phase
which is terminated when the distance between. the two estimates
exceed a-threshold, e,,. Procedures for selecting e,,. were pro-
posed. Experimerital results” showed -that significant reductions

max*

could be achieved with only minimal, if any, error rate degrada— .

tion for synthetlc and real data sets.
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