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Abstract. In this paper we consider the problem of recovering 3D Euclidean
structure from multi-frame point correspondence data in image sequences un-
der perspective projection. Existing approaches rely either only on geometrical
constraints reflecting the rigid nature of the object, or exploit temporal informa-
tion by recasting the problem into a nonlinear filtering form. In contrast, here we
introduce a new constraint that implicitly exploits the temporal ordering of the
frames, leading to a provably correct algorithm to find Euclidean structure (up
to a single scaling factor) without the need to alternate between projective depth
and motion estimation, estimate the Fundamental matrices or assume a camera
motion model. Finally, the proposed approach does not require an accurate cali-
bration of the camera. The accuracy of the algorithm is illustrated using several
examples involving both synthetic and real data.
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1 Introduction

Recovering 3D structure from a sequence of 2D images has been the subject of sub-
stantial research [1, 2]. For the orthographic projection case, Tomasi and Kanade [3]
proposed a method based on factorizing a matrix containing the coordinates of the
tracked points, which is forced to have at most rank 4. The method has been extended
to paraperspective [4, 5] and perspective [6, 7] projection. In the former case, the al-
gorithm relies on the estimation of a set of point–dependent projective depths. Sturm
and Triggs [6] proposed to recover these depths by using the epipolar constraint be-
tween two views, which in turn requires estimating the fundamental matrix. Triggs [7]
extended this method by refining the projective depths through an iterative procedure
alternating with factorization. Other iterative approaches include [8–11].

Often, factorization techniques are followed by a bundle adjustment to minimize the
2D re-projection error [12–17]. In general, this entails a non-linear optimization based
on descend methods which are very sensitive to initialization. [9] avoids this problem
by solving a sequence of eigenvalue problems, but convergence cannot be guaranteed.
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A common feature of the approaches described above is the fact that they rely en-
tirely on geometrical constraints, discarding temporal information1. Indeed, most of
these methods are based on quasi-linear algorithms that alternate between estimating
the structure and projections, and whose convergence cannot be guaranteed [18–20],
and the resulting solutions are invariant with respect to frame permutations.

Temporal correlations have been exploited to solve the related problem of simulta-
neous localization and estimation (SLAM), where the goal is to use data provided by a
single moving platform to reconstruct its 3 D trajectory and a local map. In this context,
temporal information is exploited by recasting the problem as a non-linear filtering one.
The goal is to estimate a state vector that contains the motion state of the moving sen-
sor (e.g. position, velocity, pose) and the 3D coordinates of given features, as well as
a probability density function that quantifies the uncertainty in this estimation. Earlier
approaches to SLAM required the use of additional sensor data, e.g. odometry or stereo,
while later ones, [21] avoid this by requiring a short calibration run using a landmark
with a known position. In principle, success of this approach hinges upon the availabil-
ity of a motion model for the camera, and access to the inputs to the model. While this
additional information is typically available in robotic applications, this is not the case
for sequences generated by an unknown camera (or object) motion. This difficulty can
be circumvented by assuming a simple model (e.g. constant velocity or acceleration
[21]), subject to uncertainty. However this leads to larger uncertainty in the estimated
feature position. Alternatively, [22] avoid this issue by using the dynamics for tracking
only, while reconstructing the 3-D geometry by first triangulating two key-frames ob-
tained during an initialization stage with user input, followed by epipolar search when
new keyframes are added and local bundle adjustment. While SLAM methods work
well in practice, convergence to the true depths cannot be guaranteed due to uncertainty
in the motion model, coupled with the non-convex nature of bundle adjustment. Further,
(external) calibration data is usually unavailable in pure SfM applications.

In this paper, we present a convex-optimization based solution to the problem of
Euclidean 3D structure recovery from an image sequence under perspective projection.
The proposed method avoids the estimation of epipolar geometry and the fundamen-
tal matrix. This is accomplished by exploiting the temporal information encoded in the
ordering of the given image sequence to recast the problem into a rank minimization
form, that can be efficiently solved using existing convex relaxations. The main theoret-
ical result of the paper shows that indeed the solution to this rank-minimization problem
recovers the correct Euclidean depths of the scene points, up to a single constant scaling
factor for all points across the entire motion sequence. This result is general, and neither
depends on the object motion model nor necessitates explicitly finding it. The effective-
ness of the algorithm is illustrated with several examples involving both synthetic and
real data with known ground truth.

1 In general, the temporal ordering of the frames is only used while tracking the features and
establishing correspondences across frames.
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2 3D Structure from Perspective Images

Consider a camera Cartesian coordinate system defined with its origin at the center of
projection and its Z axis along the camera optical axis. Let N be the number of points
of a moving rigid object, and let Pij = (Xij , Yij , Zij)T be the 3D Cartesian camera
coordinates of point Pj , j = 1, . . . , N , at time i, i = 1, . . . , F . Then, the corresponding
2D image coordinates at time i, pij(uij , vij), are given by

uij = f
Xij

Zij
− cu, vij = αf

Yij
Zij
− cv (1)

where f is the camera’s focal length, α is its pixel aspect ratio and (cu, cv) is its princi-
pal point. In the sequel, for notational simplicity we will assume that (cu, cv) = (0, 0)2.
With this notation, the problem of interest here can be formalized as follows.
Problem 1: Given the above setup, find the 3D scene structure Pij from the N × F
feature correspondences pij .

Classically, this problem has been solved using the Strum Triggs Algorithm [6],
based on iteratively computing the best rank 4 approximation to a matrix constructed
from the image data, and the associated projective depths. Since the problem is not
jointly convex, this algorithm is guaranteed to converge only to a local solution. Fur-
ther, the algorithm as stated above can only recover the 3D structure up to an arbitrary
(time–varying) projectivity. Recovering the Euclidian geometry entails an additional
computationally challenging non–linear, non–convex optimization.

3 Preliminaries:

Below we introduce some preliminary definitions required to recast Problem 1 as a rank
minimization problem.

Definition 1. An operator L that maps a vector xo ∈ Rn to an infinite sequence of
vectors xk

.= {L[xo]}k ∈ Rn is said to be point-wise rigid if

‖{L [P−Q]}k‖2 = ‖P−Q‖2 for all P,Q, k

Definition 2. N points P1, . . . ,PN ∈ R3 are said to belong to a rigid body if, for
each frame k, there exist a point Ok ∈ R3 (not necessarily in the object) and a point-
wise rigid operator L such that for all points and all time instants, the corresponding
trajectories satisfy: Pki−Ok = {L [Poi −Oo]}k , k = 1, 2, . . . where Pki denote the
coordinates of point Pi at time k.

For example, for a constant rotationR about a moving axis we have {L [Poi −Oo]}k =
Rk [Poi −Oo].

Definition 3. Given a vector sequence {yk}n+l−1
k=1 its Hankel matrix is defined as:

Hy,n,l
.=


y1 y2 · · · yl
y2 y3 · · · yl+1

...
...

. . .
...

yn yn+1 · · · yl+n−1


2 by redefining, if necessary, ûij = uij + cu and v̂ij = vij + cv .
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4 Recovering Geometry from Hankel Rank Minimization

In this section, we show that the Euclidean structure of a rigid object undergoing a point-
wise rigid transformation can be recovered (up to a single scaling factor) by minimizing
the rank of the Hankel matrix associated with the trajectory, subject to one linear and
two rank constraints. From its definition, it is clear that the rank of the Hankel matrix
encapsulates temporal correlations, since it is not invariant under a permutation of the
ordering of the frames. The surprising result is that this rank also encapsulates rigidity,
since as we prove below, the correct 3D rigid geometry, up to an overall constant scaling
factor, is precisely the one that minimizes it, subject to the additional constraints. This
result allows for recasting Problem 1 into a rank-minimization form.

Theorem 1 Consider the image trajectories pki = (uki, vki)T , i = 1, 2, 3, k =
1, . . . , F of the perspective projections of three points Pki, i = 1, 2, 3, belonging to
a rigid moving under some point-wise rigid motion operator L. Then, the 3D camera
Cartesian coordinates of Pki i = 1, 2, 3, k = 1, . . . , F are given by:

Pki =

Xki

Yki
Zki

 =
1

λoρk
Z∗ki

 1
f uki
1
αf vki

1

 (2)

where λo and ρ > 0 are constant factors (point and frame independent), and where
{Z∗k1, Z∗k2, Z∗k3}k=1,...,F solve the following rank minimization problem

min{Z∗k1,Z∗k2,Z∗k3}k=1,...,F rank
([

Hy13 Hy23

])
subject to: Zki ≥ 1 (3)

where

yijk =

 1
f (Z∗kiuki − Z∗kjukj)
1
αf (Z∗kivki − Z∗kjvkj)

Z∗ki − Z∗kj


and Hy

.= Hy,bF/2c,F , the Hankel matrix of the sequence {yk}Fk=1.
Proof: See the Appendix.

Theorem 1 allows for recovering the correct relative 3D structure by solving a rank–
minimization problem. This follows from the fact that since Z∗ki = λoρ

kZki, then
Z∗ki
Zki

= Z∗kj
Zkj

for all (i, j), where Z and Z∗ denote the actual and recovered depths,
respectively. While in many situations this may suffice, in others it is of interest to re-
cover the geometry up to an overall, frame-independent scaling. As we show next, this
can be accomplished by adding one linear and two rank constraints to the problem.

Corollary 1 The correct 3D geometry (up to a single constant scaling factor) satisfies
(3), subject to one linear and two rank constraints.

Proof. Note that the solutions to (3) satisfy: ‖Pki −Pkj‖22 =
(

1
λoρk

)2

‖P∗ki −P∗kj‖22
where P∗ki

.= Z∗ki
[uki
f

vki
αf 1

]T
. Next, impose rigidity of the reconstructed trajectories
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only across the first and last frames, leading to:

0 = ‖P∗Fi −P∗Fj‖22 − ‖P∗1i −P∗1j‖22 ⇒
0 =

(
λoρ

F
)2 ‖PFi −PFj‖22 − (λoρ)

2 ‖P1i −P1j‖22 ⇒ ρ = 1
(4)

where the last equality follows from the fact that the actual trajectories satisfy ‖Pki −
Pkj‖2 = constant, for all k. Thus, imposing rigidity of the reconstructed object only
for 2 points across the first and last frames forces the overall scaling to become frame
independent (e.g. αk = λo(1)k = λo). As we show below, the constraint (4) can be
recast as a combination of linear and rank constraints. Start by rewriting the constraint
‖|P∗11 −P∗12‖22 = ‖|P∗F1 −P∗F2‖22 as:

Z2
11(

u2
11

f2
+

v2
11

f2α2
+ 1) + Z2

12(
u2

12

f2
+

v2
12

f2α2
+ 1)− 2 ∗ Z11Z22(

u11u12

f2
+
v11v12
f2α2

+ 1)−

Z2
F1(

u2
F1

f2
+

v2
F1

f2α2
+ 1)− Z2

F2(
u2

F2

f2
+

v2
F2

f2α2
+ 1) + 2 ∗ ZF1ZF2(

uF1uF2

f2
+
vF1vF2

f2α2
+ 1) = 0

(5)

Next, define the following variables:

m20
t

.= Z2
t1, m

11
t

.= Zt1Zt2, m
02
t

.= Z2
t2 (6)

In terms of these new variables, (5) can be rewritten as the linear constraint:

m20
1 (

u2
11

f2
+

v2
11

f2α2
+ 1) +m02

1 (
u2

12

f2
+

v2
12

f2α2
+ 1)− 2 ∗m11

1 (
u11u12

f2
+
v11v12
f2α2

+ 1)−

m20
F (

u2
F1

f2
+

v2
F1

f2α2
+ 1)−m02

F (
u2

F2

f2
+

v2
F2

f2α2
+ 1) + 2 ∗m11

F (
uF1uF2

f2
+
vF1vF2

f2α2
+ 1) = 0

(7)

Further, it can be easily seen3 that (6) is equivalent to

rank
{[
m20
t m11

t

m11
t m02

t

]}
= 1, t = {1, F} (8)

ut
From this corollary, it follows that the 3D geometry (up to a single scaling factor) of a
moving rigid object can be found by using the following algorithm.

Algorithm 1: RANK MINIMIZATION
BASED 3D-DEPTH RECOVERY

Data: Camera Intrinsic Parameters.
Input: (uki, vki), the temporally ordered 2-D coordinates of N points in F frames.
Output: 3D depths Zki up to an overall scaling constant.
1. Form the difference vectors yiNk

.= P∗ki −P∗kN , i = 1, . . . , N − 1 where
P∗ki

.= Z∗ki
[uki
f

vki
αf 1

]T
, and the corresponding Hankel matrices HyiN

2. Solve: minZ∗ki≥1rank
[
Hy1N . . .HyN−1N

]
subject to (7) and (8)

3 This follows from simply decomposing the matrix as M = vT v, with vT =
[
Zt1 Zt2

]
.
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4.1 Computational Complexity and Robustness Considerations.

In principle, Algorithm 1 will recover the unknown Zij in a single optimization step.
Moreover, although rank minimization is generically NP–hard, efficient convex relax-
ations are available. In particular, in this paper we used the LMIRank relaxation [23].
A potential problem here is the computational cost entailed in solving simultaneously
for all Zki, since the computational complexity of this relaxation scales as (number
of decision variables)5. On the other hand, using larger sets of points minimizes the
effects of outliers. To balance these effects we pursued a RANSAC (Random Sample
Consensus) [24] approach. Since the minimum number of points required to define a
3D coordinate system is 4, we proceeded by finding the 3D coordinates corresponding
to 4 points, randomly selected from the complete set of image points, Ns times. Out of
these 4-tuples, the one preserving rigidity the most was used to find the coordinates of
the remaining points by exploiting the fact that the measurements matrix has at most
rank 4. Thus, given the 3D trajectories of 4 points Pki, the depth of a fifth point Zk5
can be found by solving a problem of the form: mins,Zk5 ‖W · s−P5‖, where

W =

P11 . . . P14

... . . .
...

PF1 . . . PF4

 ; P5
.=
[ 1
fZ15u15

1
fαZ15v15 Z15 . . .

1
fZF 5uF5

1
fαZF5vF5 ZF5

]T

5 Experiments

The accuracy of the proposed algorithm is illustrated next with experiments using syn-
thetic and real data. In all cases, the 3D structure recovered using our algorithm (Han-
kelSFM), is compared against the results of the Hung and Tang (HTSFM) and Ma-
hamud and Hebert (MHSFM) algorithms. Videos of the data are provided as additional
material.

5.1 Synthetic Data: the Utah Teapot

Next, we illustrate the robustness of the proposed algorithm to noise and poor cali-
bration data. The data consists of the trajectories of the perspective projections of 137
points4 on the Utah Teapot, centered at (880, 250, 860)′, as seen by a pin-hole camera
with focal length f = 400 and image size 800× 600 pixels.

In the first experiment, the teapot underwent a constant angular velocity rotation
ωr = 0.3, around the axis a = (0, 0, 1)′, while in the second experiment, the camera
is also translated with constant velocity (−10, 5, 0)′. Figure 1 (a)–(d) shows renderings
for frames 1, 5 and 10 for the rotation experiment and the corresponding reconstruc-
tions using HankelSFM, HTSFM and MHSFM. As shown there, HankelSFM preserves
the Euclidean geometry while the other methods deform the object frame to frame.
Quantitative comparisons are given in Figures 1 (e)-(f), 2 and 3. Figure 1 (e)-(f) shows

4 Nine points were selected from each surface of the Teapot.
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Fig. 1. (a): Frames 1, 5, and 10 of the actual teapot sequence. (b)–(d): 3D structure recovered
using HankelSFM (b), MHSFM (c) and HTSFM (d). Note that HankelSFM does not introduce
geometric distortion between frames. Right:Real and estimated depth trajectories for two basis
points. Red stars: ground truth data; solid blue line: HankelSFM; dotted black line: MHSFM; and
dashed magenta line: HTSFM. (e) Rotation experiment. (f) Rotation and translation experiment.

the depth trajectories of two of the four points selected as basis points by the Han-
kelSFM method, and the depths recovered using the three algorithms. All trajectories
were scaled by the single scaling factor c =

∑
k

∑
i Zki/

∑
k

∑
i Z
∗
ki where Zki and

Z∗ki are the ground truth and the estimated depth for point i at frame k, respectively.
Since the data is noiseless, HankelSFM exactly recovers the geometry (up to the scal-
ing factor c) as expected, while the other methods introduce varying distortion across
frames. Quantitatively, the distortion for all the points can be seen in Figure 2, show-
ing the plots of the differences between the ratio of the elements of W and W ∗, the
true and reconstructed 3D measurement matrices, respectively, and the normalization
factor c . As shown there, only the HankelSFM method produces a flat surface indi-
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Fig. 2. W
W∗ − c for the translation and rotation Utah Teapot experiment. (a) HankelSFM. (b)

MHSFM. (c) HTSFM.
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Fig. 3. (a) 2D re-projection and (b) 3D reconstruction median error as noise is increased from 0
to 3 pixels (blue HankelSFM, red MHSFM and green HTSFM). (c) Scaling factor variation ∆ as
the focal length used by the algorithm is varied from 0.5 to 1.5 times the true focal length.

cating a uniform scaling factor across all frames. Additionally, table 1 summarizes the
3D and the 2D re-projection median error for the three methods (noiseless data) while
Figures 3 (a) and (b) plot them for increasing noise levels up to 3 pixels. In all cases,
the errors are significantly lower for HankelSFM than for MHSFM and HTSFM. Fi-
nally, the very small effect of the choice of focal length on the accuracy of the depth
estimation is illustrated in Figure 3 (c) where the relative variation of the scaling factor
∆ = maxk,i ‖Zki/Z∗ki − c‖/c is plotted against K, as the focal length used by the
algorithm is set to Kf where f is the true focal length and 0.5 ≤ K ≤ 1.5.

5.2 Real Data with Ground Truth

The purpose of these experiments is to compare the performance of HankelSFM against
HTSFM and MHSFM using real data. In order to asses the accuracy of the algorithms,
the 2D data was generated by projecting the noisy 3D coordinates of special markers
attached to an umbrella and to a human sitting on a swivel chair that were measured
using a VICON motion capture system5 as shown in Figure 4, left. Quantitative re-
sults and comparisons between the 3D reconstructions and ground truth are displayed

5 It should be noted that the objects used in these experiments are flexible. Furthermore, the
markers are about 1cm. in diameter and hence have a significant depth which affects the mea-
surement of their location as the object moves in front of the motion capturing system.
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Fig. 4. (a) Sample frames of the Umbrella (top) and Human on a chair (bottom) sequences. (b)
Estimated depth trajectories for two basis points. Red stars: ground truth data; solid blue line:
HankelSFM; dotted black line: MHSFM; and dashed magenta line: HTSFM.

in Figures 4, right, and 5. Finally, 3D and 2D re-projection errors are summarized in Ta-
ble 1. As shown there, the HankelSFM algorithm recovers 3D structure up to a unique
constant and its 3D accuracy outperforms the other two algorithms.

Table 1. 3D and 2D re-projection median error.

Data Set HankelSFM MHSFM HTSFM
3D (mm.) 2D (pixels2) 3D (mm.) 2D (pixels2) 3D (mm.) 2D (pixels2)

Teapot (R) 4.89e-1 0 1.34e+1 3.5e+0 1.34e+1 1.2e-7
Teapot(RT) 1.61e-4 0 3.00e+1 1.0e+0 3.20e+1 2.5e-7
Umbrella 3.50e+1 0 8.22e+1 0.6176 8.32e+1 0.0136
Human 4.10e+1 0 1.37e+2 2.3091 1.51e+2 0.2713

6 Conclusions

In this paper we propose a novel algorithm for 3D Euclidean structure recovery from
image sequences under perspective projection. The main idea is to exploit geometri-
cal information encapsulated in the rank of a matrix (the Hankel matrix) constructed
from the measurements. This rank implicitly encapsulates temporal information, since
it strongly depends on the temporal order of the sequence: the Hankel matrices cor-
responding to two sequences with the same data in different order have generically
different rank. The main result of the paper shows that the provably correct depths (up
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(a) (b) (c) (d) (e) (f) (g)

Fig. 5. Left: Frames 1, 6 and 12 of the umbrella sequence. (a) Ground truth data, and 3D structure
recovered using (b) HankelSFM, (c) MHSFM and (d) HTSFM. Right: Frames 1, 7, 14 frames
of the human on a chair sequence with ground truth data (blue) superimposed with 3D structure
(red) recovered using (e) HankelSFM, (f) MHSFM and (g) HTSFM.

to an arbitrary, overall scaling constant) are the ones that minimize the rank of the cor-
responding Hankel matrix, thus allowing for recasting the SfM problem into a rank
minimization one. This result was established by exploiting the existence of an under-
lying model governing the motion of the rigid body. However, no assumptions are made
about this model, and there is no need to find its parameters. Indeed, our results hold
independently of the object motion model. While rank-minimization problems are NP
hard, recent developments in the field allow for relaxing them to a convex optimiza-
tion form that can be efficiently solved. When compared to existing approaches, the
proposed algorithm recovers the 3D geometry, up to a single arbitrary scaling constant,
and does require neither solving a challenging non-linear optimization, performing bun-
dle adjustment, external camera calibration or the availability of a motion model for the
moving object.

The advantages of the proposed algorithm were illustrated with synthetic and real
image sequences. Research is currently underway seeking to extend these results to
articulated and non-rigid objects.
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Fig. 6. W
W∗ − c for the umbrella (top row) and for the human on a chair (bottom row) sequences.

(a) HankelSFM. (b) MHSFM. (c) HTSFM.
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A Proof of Theorem 1.

The proof, based on basic concepts from Linear Systems theory (see for instance the
textbook [25]), consists of three steps:

1. Find an operator L with 2 inputs, such that its response to an impulse applied at the
ith input is precisely yi,αkik

.= (αkiPki − αk3Pk3).
2. Use a realization of L to find the minimal rank of any linear time varying operator

that interpolates the data, and to establish that the minimum rank interpolant is
time-invariant and corresponds to the case αki = λoρ

k, for some λo, ρ > 0.
3. Use the connection between rank of a Linear Time Invariant (LTI) operator and the

rank of its associated Hankel matrix to establish that minimizing the rank of Hyαki
recovers the depths Zti up to an overall scaling factor of the form αt = λoρ

t.

Step 1; Assume6, that the Markov parameters of L and Ok satisfy:

Lt =
∑nL
i=1 AL

i Lt−i, Ot =
∑nO
i=1 AO

i Ot−i, AL
i ,A

O
i ∈ R3×3 (9)

Let xit
.= Pti − Ot. From the above, it follows that the trajectories xik also satisfy a

model of the form

xit =
nL∑
j=1

AL
j x

i
t−j , (10)

or, in compact form:
ξit+1 = ALξit,

xit = CLξit
(11)

where

AL
.=


AL

1 AL
2 . . . AL

nL−1 AL
nL

I 0 . . . . . . 0
0 I 0 . . . 0
...

...
. . . . . .

...
0 0 . . . I 0

 ξit
.=


xit−1

xit−2
...

xit−nL

 , CL =
[
I 0 . . . 0

]

6 This is without loss of generality, since over finite horizons, any trajectory Lk can be interpo-
lated with an ARMA model of sufficiently high order.
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With this notation, the trajectories xit in (10) are given by:

xit = CLξit = CLALξit−1 = · · · = CLAtLξio (12)

Thus, xit is the impulse response of the system:

ξit+1 = ALξit + ξioδt
xit = CLξit

(13)

A similar situation holds for Ot, with Aj
L and AL replaced by Aj

O and AO, respec-
tively, and ξt by a vector ωt containing the past values Ok, k = t, . . . , t − nO + 1.
Hence Ot can be obtained as the impulse response of a system with state space realiza-
tion (AO, ωo, [I 0 . . . 0]).

Given two points Pi,Pj from the rigid, and a time varying scaling constant αt,
consider now the vector yαtt

.= (αtPti −Ptj). Since Pti = xit + Ot, we have that

yαtt = αt(xit + Ot)− (xjt + Ot) = αtxit − xjt + (αt − 1)Ot

From (13) and linearity it follows that the trajectory yαtt can be generated as the impulse
response of the system:

ζt+1 =

AL 0 0
0 AL 0
O O AO

 ζt +

ξioξjo
ωo

 δt
yαtt =

[
αtCL −CL (αt − 1)CO

]
ζt

(14)

Finally, consider three points P1,P2,P3 and the corresponding vectors yiαti .=
αtiPti − αt3Pt3, i = 1, 2. It follows from above that the two trajectories yiαti can be
simultaneously generated as the impulse response of the system:

ζt+1 = Aζt + Bu; u ∈ R2

yt = Ctζt
(15)

where

A =

AL 0 0 0 0 0
0 AL 0 0 0 0
0 0 AO 0 0 0
0 0 0 AL 0 0
0 0 0 0 AL 0
0 0 0 0 0 AO

 B =


ξ1o 0
ξ3o 0
ωo 0
0 ξ2o
0 ξ3o
0 ωo

, CL =
[
I 0 . . . 0

]
, CO =

[
I 0 . . . 0

]

Ct = [αt1CL αt3CL (αt1 − αt3)CO αt2CL −αt3CL (αt2 − αt3)CO]
(16)

Step 2: Recall [25] that for linear time invariant systems, given a triple (A,B, C), with
A ∈ Rn×n, the order of the minimal realization (Am,Bm, Cm) that has the same in-
put/output response is given by the rank of the product of its controllability and observ-
ability matrices, defined as:

Kctrb =
[
B AB . . .An−1B

]
, Kobs =

[
CT ATCT . . . (An−1)TCT

]
(17)
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However, this result cannot be directly applied to (15), due to the time–varying scaling
factors αti in Ct. In this case, the order of the minimal realization (Am,Bm, Cm) that
has the same input/output response as the original triple (A,B, C) is given by ([25],
Chapter 9) rank(W c

tW
o
t ) where

Wo
t = (Kt,o)T Kt,o, Wc

t = (Kt,c)T Kt,c, Kt,o =


Ct−1

Ct−2A
...

CoAt−1

 , Kt,c =
[
B AB . . .At−1B

]

Note that the pair (A,B) is time invariant (since no scaling factors are involved).
Further, from a PBH argument (see [25], page 366) it can be shown that, if t ≥ n, then,
generically, rank(Kt,c) = n. On the other hand, using the explicit expressions for A
and C yields, for each block-row of Kt,o:

(Kt,o)j =
[
α(t−j)1

(
KL
obs

)
j
−α(t−j)3

(
KL
obs

)
j

(α(t−j)1 − α(t−j)3)
(
KO
obs

)
j

α(t−j)2
(
KL
obs

)
j

−α(t−j)3
(
KL
obs

)
j

(α(t−j)2 − α(t−j)3)
(
KO
obs

)
j

]

where (M)j denotes the jth block–row of a matrix M, and KL
obs,K

O
obs denote the

observability matrices of (CL,AL) and (CO,AO), respectively. Since by construction
both realizations are observable, it follows that, if the motion of Ok has at least one
mode not contained in the operator L (the relative motion of the rigid with respect
to O) then the minimum rank of Kt,o over all αti > 0 is achieved by selecting αt1 =
αt2 = αt3 = αt, an overall, time varying scaling factor. Further, note that this minimum
is achieved by an LTI system if and only if αt = λoρ

t for some λo, ρ 6= 0.
Step 3. Let Ẑti and P̂ti, denote the actual values of Zti and the 3D trajectories, re-
spectively. Consider any candidate trajectory Z̃ti

.= αtiẐti and denote by Pti, the 3D
trajectory reconstructed from the 2D data using Z̃ti. Finally, define the difference vec-
tors:

yit
.= Pti −Pt3 =

(
αtiP̂ti − αt3P̂t3

)
(18)

and the associated matrix Hy =
[
Hy1 Hy2

]
. Consider any sequence α̃ti > 0 and let

L(α̃ti) denote the associated operator. From step 2 above, it follows that

minαtirank{L(αti)} ≤ rank{L(α̃ti)} ≤ rank{H(α̃ti)}

with the equalities holding only in the case where L is an LTI operator, e.g. α̃ti =
λoρ

t, i = 1, 2, 3. Hence, the depths Zti obtained by minimizing the rank of Hy satisfy
Zti = λoρ

tẐti for some λo, ρ 6= 0.


