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Abstract

A large number of problems arising in computer vision
can be reduced to the problem of minimizing the nuclear
norm of a matrix, subject to additional structural and spar-
sity constraints on its elements. Examples of relevant appli-
cations include, among others, robust tracking in the pres-
ence of outliers, manifold embedding, event detection, in-
painting and tracklet matching across occlusion. In princi-
ple, these problems can be reduced to a convex semi-definite
optimization form and solved using interior point methods.
However, the poor scaling properties of these methods limit
the use of this approach to relatively small sized problems.
The main result of this paper shows that structured nuclear
norm minimization problems can be efficiently solved by us-
ing an iterative Augmented Lagrangian Type (ALM) method
that only requires performing at each iteration a combina-
tion of matrix thresholding and matrix inversion steps. As
we illustrate in the paper with several examples, the pro-
posed algorithm results in a substantial reduction of com-
putational time and memory requirements when compared
against interior-point methods, opening up the possibility
of solving realistic, large sized problems.

1. Introduction
During the past few years considerably attention has

been devoted to the Robust PCA problem: [2, 3] decom-
posing a given data matrix D as D = A + E where A has
low rank and E is sparse. Intuitively, this problem seeks to
recover an underlying low rank matrix A from experimen-
tal measurements D corrupted by outliers E that are sparse
but can have large magnitude. Examples of applications in-
clude image and video restoration [8], video surveillance
[2], background substraction [7], image alignment [10], re-
moving shadows from face images [2], and motion segmen-
tation in the presence of outliers [6]. While in principle the
problem above is NP–hard, it has been shown [2] that if
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Figure 1. Restoring a textured imaged. Left: Original image. Cen-
ter: Image corrupted with a single outlier at position (1,4). Right:
Imaged restored using RPCA

the matrix of outliers E is sufficiently sparse (relative to the
rank of A) and the sparsity pattern of E is random, then A
can be recovered from D by simply solving the following
(convex) optimization problem1:

min
A,E
‖A‖∗ + λ‖E‖1 subject to: D = A + E (1)

where ‖.‖∗ denotes the nuclear norm. In turn, this problem
can be efficiently solved using a number of methods that
include, in addition to interior point, Iterative Threshold-
ing (IT), Accelerated Proximal Gradient (APG) and Aug-
mented Lagrange Multipliers (ALM) [9]. Unfortunately,
these methods cannot handle the case where the matrices
A and E are subject to structural constraints.

To motivate the need to incorporate these constraints,
consider for instance the problem of restoring the image
shown in Figure 1, a checkerboard where a single entry has
been corrupted by an outlier. The pixel values of the origi-
nal and corrupted images, I and Ic, are given by

I =


0 2 0 2
2 0 2 0
0 2 0 2
2 0 2 0

 Ic =


0 2 0 0
2 0 2 0
0 2 0 2
2 0 2 0

 (2)

It can be easily shown that restoring the image by solving

Ir = argmin ‖Ir‖∗ + 0.1‖E‖1 subject to: Ir = Ic + E

1Consistent numerical experience shows that this approach typically
succeeds even when these conditions do not hold.
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yields the solution:

Ir =


0 2 0 0
2 0 2 0
0 2 0 0
2 0 2 0

 , E =


0 0 0 0
0 0 0 0
0 0 0 −2
0 0 0 0


which is clearly incorrect. On the other hand, pursuing the
Hankel based inpainting approach proposed in [11] leads to
the following problem:

HIr
= argmin ‖HIr

‖∗ + λHE

subject to:HIr
= HIc

+ HE
(3)

where, for a given n ×m matrix X,HX denotes the block
circulant Hankel matrix

HX
.=


R1 R2 . . . Rn

R2 R3 . . . R1

...
...

. . .
...

Rn R1 . . . Rn−1

 . (4)

where Ri denotes the ith column of X. In this case, “de-
hankelizing” the solution to the optimization problem (3)
indeed recovers the correct image. Note that Problem (3)
does not fall under the form (1), due to the constraint that
HIr (and hence HE) must have a block-circulant Hankel
structure. Indeed, problem (3) is a special case of the Struc-
tured Robust PCA problem (SRPCA) addressed in this pa-
per:

minA,E ‖A‖∗ + λ‖E‖1 subject to:
D = A + E and structural constraints on A and E

(5)
Since this problem is convex, it can be solved for instance
using interior point methods. However, while convergence
of these methods is usually fast, they have poor scaling
properties (typically for an n × n matrix, the complexity
of each iteration is O(n6)), and hence their use is restricted
to small size problems. On the other hand, the existence of
structural constraints prevents direct use of the fast first or-
der methods developed to solve RPCA problems. Motivated
by these difficulties, in this paper we present a fast, compu-
tationally efficient algorithm for solving SRPCA problems.
As in the case of the state–of–the–art methods for solving
the unconstrained case, the proposed method uses only first-
order information, hence avoiding the computational com-
plexity of interior-points methods, and converges Q-linearly
(or Q-superlinearly) to the optimum. On the other hand,
it can handle a variety of both structural and semi-definite
constraints. These results are illustrated with several ex-
amples drawn from a broad spectrum of computer vision
problems.

2. Preliminaries
In this section we summarize, for ease of reference, the

notation used in the paper and some key background results.

2.1. Notation
MT Transpose of the matrix M
Trace{M} Trace of the square matrix M.
σi(M) ith largest singular value of M.
◦ Hadamard product of matrices: (A ◦

B)i,j = Ai,jBi,j .
〈M,N〉 Inner product in the space of square

n × n matrices defined as 〈M,N〉 .=
Trace{MTN}

‖M‖F Frobenious norm: ‖M‖2F
.= 〈M,M〉 =

Trace{MTM}
‖M‖∗ Nuclear norm: ‖M‖∗ =

∑
i σi(M).

‖M‖1 `1 norm: ‖M‖1 =
∑
i,j |Mij |.

vect(M) Matrix vectorizing operator: m =
vect(M) is a vector formed by stacking
the columns of M.

mat(a, n) Vector to matrix operation:

mat(a, n) .=
[
a(1 : n− 1) a(n : 2n− 1) . . .

]
in the sequel, the dimension n will be
omitted when clear from the context.

D(x, τ, w) Weighted soft thresholding operation:

D(x, τ, w) = max {0, sign(x)(|x| − τw)}

When applied to matrices, D(., ., .) acts
on each element, by shrinking each ele-
ment in the matrix by its corresponding
weight w(i,j) and τ product. In the sequel,
by a slight abuse of notation we will use
D(x, τ) when w = 1.

2.2. Augmented Lagrangian Method

Consider a constrained optimization problem of the
form:

minXf(X) subject to h(X) = 0 (6)

The Augmented Lagrangian Method (ALM) seeks to solve
this problem by forming the augmented Lagrangian:

L(X,Y, µ) = f(X) + 〈Y, h(X)〉+ µ
2 ‖h(X)‖2F (7)

and proceeding (iteratively) as follows:

Algorithm 2.2: GENERAL ALM

while not converged do
1. Xk+1 = argminXL(Xk,Yk, µk)
2. Yk+1 = Yk + ρh(Xk+1)
3. µk+1 = ρµk
end while
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It can be shown [1] that if µ is an increasing sequence
and f and h are smooth, then the algorithm above con-
verges at least Q-linearly to the optimal solution. These
results were further extended in [9] to problems of the form
(1), where the objective is not continuously differentiable
everywhere.

2.3. The Structured RPCA problem

The general form of the SRPCA problem addressed in
this paper can be formally stated as:

Problem 1 (SRPCA). Given a data matrix D and weights
wi, W1 and WF , solve

minA,E

∑
i wiσi(A) + ‖We ◦E‖1 + ...

... 12 ‖WF ◦E‖2F
subject to D = A + E, A ∈ SA and E ∈ SE

(8)
where SA, SE , the sets that define the structure of A and
E are of the form SX = {X : X = mat(Sx)}, where S is
a given matrix with full column rank and x is an arbitrary
vector of appropriate dimensions.

Remark 1. Note that the structure above is quite gen-
eral, capturing all cases where there is a linear dependence
amongst the elements of the matrix under consideration.
For instance, if A ∈ R3×3 is restricted to have a Hankel
structure, then it can be written as A = mat(SHa) where
a ∈ R5 and

SH =



1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


Remark 2. The objective function (8) above can be thought
of as a convex relaxation of the problem of recovering a
(structured) low rank matrix from measurements corrupted
both by noise and outliers. Using the re-weighted nuclear
and `1 norms as surrogates for rank and cardinality, re-
spectively, leads precisely to this problem. Note also that if
wi = 1, WF = 0, We = λ1 and SE = SA = Rn×n, then
the RPCA problem (1) is recovered.

3. An ALM approach to Structured RPCA

The key point in applying an algorithm of the form (2.2)
to Problem 1 is to develop a computationally efficient way
of finding the minimizers in the first step. As we show next,

this can be accomplished by using a combination of thresh-
olding and matrix inversion steps. Recall that in the case of
RPCA, at each iteration, the explicit solution to

min
A,E
‖A‖∗+λ‖E‖1 + 〈Y,D−A−E〉+ µ

2
‖D−A−E‖2F

is given by [9]:

Ak+1 = UD(Σ, µ−1
k )VT

Ek+1 = D(D−Ak+1 + 1
µk

Yk, λµ
−1
k )

where UΣVT=svd(D − Ek + 1
µk

Yk) The main barrier
in applying ALM type methods to solve Problem 1 is that,
contrary to the situation above, when A and E are subject to
structural constraints, the resulting problem does not admit
an explicit solution at each step. As we show next, this dif-
ficulty can be circumvented by adding new variables J and
T, subject to the constraints J = A and T = E. While this
seems a trivial step, when incorporated to the augmented
Lagrangian, these new variables and constraints allow for
decoupling the problem of minimizing a combination of the
nuclear and `1 norm from that of enforcing the structural
constraints. In turn, this allows for finding computationally
efficient closed form solutions at each iteration. It is worth
mentioning that in this approach, the structural constraints
on A and E are not enforced in the intermediate steps (but,
due to convergence are guaranteed to hold for the optimal
solution). This intermediate constraint relaxation results in
substantial speed-up vis-a-vis methods that enforce the con-
straint at each step.

3.1. An Exact ALM method

When the new variables and constraints are added to the
problem, the resulting augmented Lagrangian is given by:

L(X,Y1,Y2,Y3, µ) =
∑
i wiσi(J) + ‖We ◦T‖1

+ 1
2 ‖WF ◦ SEe‖2F + 〈Y1,J−mat(SAa)〉

+
〈
STAvec(Y2),ST

Avec(D)− ST
ASAa− ST

ASEe
〉

+ 〈Y3,T−mat(SEe)〉+ (µ/2)(‖J−mat(SAa))‖2F
+
∥∥ST

Avec(D)− ST
ASAa− ST

ASEe
∥∥2

2

+ ‖T−mat(SEe)‖2F )

where X .= (J,a,T, e). Note that this problem is con-
vex and hence can be solved by successively minimizing
L(., , ) with respect to each of the elements of X. At
the beginning of the (k + 1)th iteration, the values of
ak,Tk, ek,Yk

1 ,Y
k
2 ,Y

k
3 , µ

k are known and the goal is to
minimize L with respect to Jk+1. A standard completion of
the square argument shows that the optimal Jk+1 is given
by:

Jk+1 = argminJ
∑
i wiσi(J)

+µk

2 (
∥∥J−mat(SAak) + Yk

1/µ
k
∥∥2

F
)

1706



a problem whose explicit solution is given by [12]:

Jk+1 = UD(Σ, 1/µk,W)VT

where UΣVT=svd(mat(SAak)−Yk
1/µ

k) and W is a di-
agonal matrix with entries Wii = wi.

Next, consider the problem of minimizing Lwith respect
to a and note that, due to the introduction of the new vari-
able J, L is differentiable with respect to a. Hence, setting
∂aL = 0 and using the fact that SA has full column rank
leads to:

a =
[
(I + STASA)

]−1
STA [vect(D)− SEe + vect(Y2/µ)

+
(
STASA

)−1
STA (vect(J) + vect(Y1/µ))

]
(9)

Similarly, using a completion of squares argument to solve
for T leads to:

Tk+1 = argminT
1
µk ‖We ◦T‖1

+ 1
2

∥∥T−mat(SEe) + Yk
3/µ

k
∥∥2

F

As before, this problem admits an explicit solution given
by:

Tk+1 = D(mat(SEek)− Yk
3

µk
,

1
µk
,We)

Finally, setting ∂eL = 0 and solving for e yields:

e = (STESASTASE + STESE + 1
µSTEŴT

FŴFSE)−1

(STE [vect(T) + vect(Y3/µ)]
+STESASTA [vect(D)− SAa + vect(Y2/µ)])

(10)
Here ŴF = diag(vect(WF ))
Iteratively repeating the steps above leads to the opti-

mal Xk+1, for given values of the Lagrange multipliers Yk
i .

Once Xk+1 is available, the method proceeds as in the stan-
dard ALM case, updating the Lagrange multipliers using:

Yk+1
1 = Yk

1 + µk(Jk+1 −mat(SAak+1)) (11)
Yk+1

2 = Yk
2 + µk(D−mat(SAak+1)−mat(SEek+1))

Yk+1
3 = Yk

3 + µk(Tk+1 −mat(SEek+1))

and setting µk+1 = ρµk, for some ρ > 1. The complete
algorithm is summarized next.

Algorithm 3.1: SRPCA ALGORITHM EALM

ρ > 1, m0

a0 = S+
Avect(D) (S+ is the pseudo inverse)

J0 = D, e0 = 0, T0 = 0
Y0

1 = 0, Y0
2 = 0, Y0

3 = 0
while not converged do (outer loop)

while not converged do (inner loop)
1. Jk+1 = UD(Σ, 1/µk,W)VT ,
UΣVT=svd(mat(SAak)−Yk

1/µ
k)

2. Solve ak+1 using eq. (9)

3. Tk+1 = D(mat(SEek)− Yk
3

µk ,
1
µk ,We)

4. Solve ek+1 using eq. (10)
end while (inner loop)
5. Update the lagrange multipliers using (11)
6. µk+1 = ρµk

end while (outer loop)

Theorem 1. The sequence Xk generated by Algorithm 3.1
converges to a solution of Problem 1. Further L(Xk,Yk)
converges as O( 1

µk ) to the optimal value of the objective.

Proof. See the Appendix

3.2. An Inexact ALM method

While the algorithm above is guaranteed to converge Q-
linearly to the optimal solution, the exact minimization of L
in steps 1–4 could entail many iterations. Motivated by [9],
we propose to avoid these iterations by considering an in-
exact ALM algorithm, where (J,a,T, e) are updated only
once in each iteration. The entire algorithm can be summa-
rized as

Algorithm 3.2: WEIGHTED SRPCA IALM ALGORITHM

ρ > 1, m0

a0 = S+
Avect(D) (S+ is the pseudo inverse)

J0 = D, e0 = 0, T0 = 0
Y0

1 = 0, Y0
2 = 0, Y0

3 = 0
while not converged do

1. Run the inner loop of Algorithm (3.1) once.
2. Update the lagrange multipliers using (11)
3. µk+1 = ρµk

end while

It can be shown that, under mild conditions on the se-
quence µk, the algorithm above also generates sequences
Ak and Ek that converge to the solution of Problem 1, al-
though in this case the rate of convergence is hard to ascer-
tain. Nevertheless, consistent numerical experience shows
that this algorithm has good convergence properties.
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Experiment SRPCA SDP
Prediction (fps) 3.7 2.1
Tracklet Matching (secs per pair) 1.23 650
Outlier Cleaning (secs per track) 25 N/A

Table 1. Comparison of the Running Times of SRPCA vs. SDP
for three different applications

4. Applications
In this section we illustrate the advantages of the pro-

posed method using three different applications: (i) robustly
predicting future positions of a target, (ii) tracklet match-
ing across occlusion, and (iii) outlier detection and removal
from long trajectories. Table 1 compares the performance of
SRPCA against previous approaches based upon recasting
these problems into a Semi-Definite optimization form and
using conventional SDP solvers. These experiments were
performed on a Dual Core 2.53GHz, 24GB RAM com-
puter. SRPCA was implemented in Matlab, with ρ = 1.05,
δ = 1e − 2, µ0 = 1e − 2, SA = SE = SHankel, and
WF = 0 (since in the applications of interest it suffices to
minimize a combination of the nuclear and `1 norms). The
semi-definite programs were solved using the cvx package
in conjunction with the sedumi SDP solver. As shown in
the table, in all cases SRPCA resulted in a substantial re-
duction of the computational time. Further, the memory re-
quirements of the SDP solver prevented its use in the outlier
removal example, even on a 24GB machine. The videos of
the examples are available in the supplementary material.

4.1. Target Location Prediction

As shown in [5], future positions of a moving target
can be predicted by solving a rank minimization problem.
Specifically, if past measurements y1, y2, ...yt are available,
it can be shown that, under mild conditions, the next posi-
tion yt+1 satisfies:

yt+1 = argmin
y

rankHy

where

Hy
.=



y1 y2 y3 .. ym
y2 y3 .. .. ym+1

y3 y4
. . .

...
...

...
... .. ..

...
yr−1 yr .. yt−2 yt−1

yr yr+1 .. yt−1 y


In the case of measurements corrupted by bounded noise,
ŷk = yk + ek, with ‖e‖ ≤ η, yt can be predicted by solving
the following optimization problem:

yt+1 = argmin
y,e

rank Hŷ + He s.t.‖e‖ ≤ η

where Hŷ and He denote the Hankel matrices associated
with the sequences ŷ and ê. Since minimizing rank is NP-
hard, [5] proposed to solve this problem using a re-weighted
nuclear norm heuristics that, at each step seeks to minimize∑
i wiσi(Hŷ + He), subject to ‖e‖ ≤ η. While this prob-

lem does not exactly fit the SRPCA formalism, it can be
modified to do so by handling the constraint on the norm
via a penalty function, leading to:

yt+1 = argmin
y,e

∑
i

wiσi(Hŷ + He) + ‖We ◦He‖

The effectiveness of using a combination of an SRPCA
based predictor and a particle filter to achieve sustained
tracking in the presence of occlusion is illustrated in Fig. 2.
Here the goal was to track the ball when visible and predict
its location when occluded or coming out of an occlusion.
As shown there, the combination SRPCA and particle filter
successfully accomplished this task, even though the player
with the ball is undergoing complex motions, the camera
is panning and the ball is occluded by a second player for
about 6 frames. In this particular example We was chosen
to be

m = [1Nh
, 0No+1], wn(j) = 1/(

N∑
i=1

, |S(i, j)|)

we = wn ◦m, vec(We) = Swe

where No is an estimate of the duration of the occlusions to
be handled and 1N and 0N denote vectors of dimension N
with elements all ones or zeros, respectively. The purpose
of wn is to cancel the repetitions that might occur in some
elements of E matrix due to the structure S

4.2. Tracklet Matching

In this section we consider the problem of tracklet
matching, that is, establishing the identities of multiple tar-
gets across occlusion. As shown in [4], this problem can
also be reduced to a Hankel rank minimization. Briefly,
given a pair of tracklets bi and aj (before and after the oc-
clusion, respectively), the idea is to attempt to connect them
by finding the missing pixels via rank minimization. To il-
lustrate this point with a simple example, assume that each
tracklet has 2 points and the gap between tracklets is two
frames. Then, the missing pixels can be found by solving:

y1:2 = argmin
y

rankHb,y,a Hb,y,a
.=

b1 b2 y1 y2
b2 y1 y2 a1

y1 y2 a1 a2


This procedure induces a similarity measure between track-
lets s(bi, aj) .= miny rankHb,y,a that can be used to pair-
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Figure 2. Using SRPCA to predict target locations under occlusion, Top right image is the ball last seen by the tracker and the bottom
middle image is the recovered tracker image

wise group them. Note that in principle this approach re-
quires solving NbNa rank minimization problems, where
Nb and Na denote the number of tracklets before and af-
ter the occlusion, respectively. Thus, it is of interest to de-
velop fast algorithms for computing this similarity measure.
Relaxing the rank minimization to a nuclear norm and tak-
ing into account the possible existence of outliers leads to a
SRPCA problem, where all the matrices involved are con-
strained to have a Hankel structure. The complete algorithm
is outlined below:

Algorithm 4.2: TRACKLET MATCHING WITH RSPCA

for each tracklet pair one (t1(t) and t2(t))
1. Let the lengths of t1(t) and t2(t) be
N1 and N2 separated by No number of occluded frames
2. Construct the We as follows
m = [1N1 , 0No

1N2 ], wn(j) = 1/(
∑N
i=1, |S(i, j)|)

we = wn ◦m, vect(We) = Swe

3. Construct vect(D) = S[t1(.), 0No
, t2(.)]T

4. Solve SRPCA with the defined variables,
(Here a=combined trajectory is the output of the SRPCA)
5. s(t1(.),t2(.))=

∑
i wiσi(mat(Sa))

end for
6. Assign closest tracklets to each
other using Distance(.,.)

The effectiveness of this approach is illustrated in Fig.
3 where it was used to consistently label two basketballs

across occlusion. Note that this problem is far from triv-
ial due to the fact that the targets have similar appearance
and bounce nearly at the same point, and are partially oc-
cluded for about 17 frames. In this case, we used SRPCA
to compute a similarity measure by (approximately) mini-
mizing the rank of the Hankel matrix with respect to the 17
missing measurements. Note that computing this measure
using SRPCA only took 1.2 seconds per pair, compared to
650 seconds when using an SDP solver.

4.3. Outlier removal from long trajectories

Next, we illustrate the use of SRPCA to detect and clean
outliers. Conceptually, the idea is similar to that in section
4.1: An outlier is characterized by the fact that it does not
match the “dynamics” of its neighboring points and thus
causes a substantial increase in the rank of the correspond-
ing Hankel matrix. As before, relaxing rank to nuclear norm
leads directly to an SRPCA type problem of the form

min ‖A‖∗ + ‖We ◦E‖1 s. t.
D = A + E
A and E are Hankel

where D is the Hankel matrix of the measured trajectories.
Note than in here, the non-zero elements of the error matrix
E correspond precisely to the outlier locations, while the
resulting matrix A contains the “cleaned” trajectories.
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(a) Before occlusion, During occlusion and After occlusion cases, with lost identities

(b) Labels provided by SRPCA: Before occlusion, Prediction during occlusion and After occlusion cases. A black edge around a solid color indicates a
predicted location

Figure 3. Using SRPCA to maintain consistent labeling across occlusion.

Algorithm 4.3: OUTLIER CLEANING WITH SRPCA

for each corrupted trajectory t(t)
1. Construct the We as follows
wn(j) = 1/(

∑N
i=1, |S(i, j)|), vect(We) = Swe

2. Construct vect(D) = S[t(t)]T

3. Solve SRPCA with the defined variables
(Here a=clean trajectory is the output of the SRPCA)
end for

Fig. 4 shows the results of applying the algorithm out-
lined above to remove outliers from trajectories that are 250
frames long, manually corrupted with outliers added at ran-
dom locations with probability 0.2. As illustrated there, SR-
PCA was able to recover the original trajectories in about
25 seconds. On the other hand, this example could not
be solved using a standard SDP solver in a computer with
24GB of RAM due to insufficient memory.

5. Conclusions
A large number of problems arising in computer vision

involve minimizing a combination of the sum of the nuclear,
`1 and Frobenious norms of matrices, subject to additional
structural constraints. Examples of relevant applications in-
clude, among others, robust tracking in the presence of out-
liers, manifold embedding, event detection, inpainting and
tracklet matching across occlusion. Unfortunately, the ex-
istence of structural constraints prevents the use of very ef-
ficient algorithms recently developed to solve the uncon-
strained case, while the use of general semi-definite opti-
mization solvers is limited to relatively small problems, due
to their poor scaling properties. The main result of this pa-
per shows that structured nuclear norm minimization prob-
lems can be efficiently solved by using an iterative Aug-
mented Lagrangian Type (ALM) method that only requires

performing at each iteration a combination of matrix thresh-
olding and matrix inversion steps. These results were illus-
trated with several examples where the proposed algorithm
resulted in a substantial reduction of computational time
and memory requirements when compared against interior-
point methods. Research is currently underway seeking to
extend these results to handle inequality and semi-definite
constraints.
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(b) Clean trajectories, output of the SRPCA

Figure 4. Using SRPCA to clean long time trajectories.
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A. Proof of Theorem 1
Since ‖X‖∗,W

.=
∑
wiσi(X) and ‖X‖1,W

.=
‖W ◦X‖1 are matrix norms, direct application of Lemma
1 in [9] shows that the sequences Yk

1 and Yk
3 are bounded.

To show boundedness of Y2, note that L is differentiable
with respect to a and e. Thus, from (9) it follows, using the
explicit expressions for the updates of Yi, that

0 = STAvec(Y1)k+1 + STASASTAvec(Yk+1
2 )

Since SA has full column rank and Y1 is bounded, it fol-
lows that STAvec(Y2) is bounded. Next, note that〈

STAvec(Y2),ST
Avec(D)− ST

ASAa− ST
ASEe

〉
+µ

2

∥∥ST
Avec(D)− ST

ASAa− ST
ASEe

∥∥2

2

= 1
2µk

[
‖ST

AYk+1

2 ‖22 − ‖ST
AYk

2‖
2
2

]
Similarly,

〈Y1,J−mat(SAa)〉+ (µ/2)(‖J−mat(SAa))‖2F
= 1

2µk

[
‖Yk+1

1 ‖22 − ‖Yk
1‖22
]

and

〈Y3,T−mat(SEe)〉+ (µ/2)(‖T−mat(SEe)‖2F )
= 1

2µk

[
‖Yk+1

3 ‖22 − ‖Yk
3‖22
]

Thus, from the boundedness of Y1,STY2 and Y3 it fol-
lows that as µk → ∞ then L(Xk,Yk) →

∑
i wiσi(J) +

‖We ◦T‖1 + 1
2 ‖WF ◦E‖2F as O( 1

µk ). Denote by A∗

and E∗ the optimal solution to (8), and by L∗ the cor-
responding value of the objective. Since J = A∗ and
T = E∗ is a feasible solution to the optimization prob-
lem solved in the first step of Algorithm 3.1, it follows that
L(Jk,ak,Tk, ek) ≤ L∗. Hence∑

i wiσi(J
k) +

∥∥We ◦Tk
∥∥

1
+ 1

2

∥∥WF ◦Ek
∥∥2

F
≤ L∗ + O( 1

µk )

From the boundedness of Y1 and Y3 and the update equa-
tions, it follows that ‖Jk − Ak‖ and ‖Tk − Ek‖ → 0 as
O(µ−k). Finally, from the boundedness of STvec(Y2) it
follows that ‖ST

Avec(D)− ST
ASAak − ST

ASEek‖2 → 0.
Hence, the sequences ak and ek are bounded, and thus
have accumulation points a∗, e∗. Let A∗ .= SAa∗ and
E∗ .= SEe∗ If the structural constraints are feasible (in
the sense that there exist vectors d1 and d2 such that
D = SAd1 + SEde), then this last equation implies that
A∗ + E∗ → D. Combining the arguments above with con-
tinuity of the norms, it follows that the matrices A∗ and E∗,
which satisfy the structural constraints by construction, are
such that

∑
i wiσi(A

∗)+‖We ◦E∗‖1+
1
2 ‖WF ◦E∗‖2F =

L∗.
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