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Abstract— This paper presents a novel algorithm for effi-
ciently minimizing the nuclear norm of a matrix subject to
structural and semi-definite constraints. It requires performing
only thresholding and eigenvalue decomposition steps and
converges Q-superlinearly to the optimum. Thus, this algorithm
offers substantial advantages, both in terms of memory require-
ments and computational time over conventional semi-definite
programming solvers. These advantages are illustrated using
as an example the problem of finding the lowest order system
that interpolates a collection of noisy measurements.

I. INTRODUCTION AND MOTIVATION

The problem of identifying a causal, finite dimensional
linear shift invariant system from samples of its output and
some a-priori information, has been extensively studied in
the past 2 decades. The case where the structure of the
model is known up to a set of (unknown) parameters, leads
to classical parameter identification methods [24]. When
such models are not available a-priori, then non-parametric
techniques, roughly divided into subspace identification [31]
and operator–theoretic methods [12], [30], must be used.

Subspace-based methods evolved from state-space re-
alization theory [24] leading to a number of algorithms
known as the 4SID methods [31]. While these methods are
computationally attractive, they cannot incorporate a priori
information, such as hard bounds on the noise, H∞ gain
of the system or its stability margin. Indeed, there is no
guarantee that the model produced by subspace identification
methods is stable, in particular when dealing with noisy
data generated by a lightly damped system. Further, there
are no a-priori computable bounds on the distance from the
identified model to the actual plant.

Alternatively, operator–based methods adopt a worse–case
approach, and produce a nominal model of the system and
a worst case identification error bound. In this context the
identification problem can be restated as: given a known
input u and the corresponding output y corrupted by noise η,
find a bounded (for instance in the induced `2 sense) linear
operator L such that y = L(u)+η, subject to additional con-
straints on its structure. For many cases of practical interest,
this formulation leads to a convex optimization problem that
can be efficiently solved [12]. Moreover, these algorithms
converge to the actual plant as the information is completed
[30]. However, a difficulty with these methods is that they
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lead to high order models (typically the order is roughly
the number of data points used in the identification). Thus,
in order to avoid high order controllers, a model reduction
step is usually necessary. Unfortunately, the resulting model
may no longer satisfy some of the a-priori assumptions or
interpolate the experimental data within the noise level.

As we show in this paper (see section V for details), the
difficulties noted above can be circumvented by developing
an approach that combines the advantages of subspace and
worst-case methods, leading to low order, interpolatory mod-
els with guaranteed error bounds. While in principle this
requires solving a challenging constrained rank minimization
problem, using a (weighted) nuclear norm as surrogate for
rank leads to a convex optimization problem of the form:

ming ‖H(g)‖∗,W subject to:[
KR−2 T(g)T

T(g) KR2

]
� 0

‖y −T(g)u‖∞ ≤ ε

(1)

where (u,y) denote the input applied to the system and the
corresponding measured output, K and R are givena, and
where the operators H and T have a Hankel and Toeplitz
structure, respectively. In principle, this problem can be
solved using conventional SDP solvers. However, their poor
scaling properties (the computational complexity scales as
O(number of variables3)) prevents the use of this approach
beyond moderately sized problems. Our main result seeks
to address this difficulty by developing a computationally
efficient algorithm to solve a general class of constrained
nuclear norm minimization problems of the form:

minh,e1,e2 ‖SH(h)‖W,∗ + λ1 ‖e1‖1 + λ2
2 ‖e2‖22

s.t. d = Fh + e1 + e2

Ah− b ≥ 0, SQ(h) � 0
(2)

where the matrices S(.) are affine functions that define
the structure of the problem. For instance, in the case of
finding low order interpolants, SH and SQ have a Hankel
and Toeplitz structure respectively, and e1 and e2 are used
to handle outliers and measurements noise. Problem (2)
can be though off as a generalization of the Robust PCA
problem [10], [11]: decomposing a given data matrix D as
D = A + E where A has low rank and E is sparse. During

aThese values are related to the `2 induced gain and time constants of
the system, respectively.
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the past few years, substantial progress has been made in
solving this problem, leading to several computationally
efficient algorithms (see for instance [22], [3], [18]. Still,
these methods are not capable of handling semi-definite and
inequality constraints and thus cannot be applied to problems
of the form (1). The main result of this paper is a first
order iterative algorithm for solving general problems of the
form (2). This algorithm uses only first order information,
thus avoiding the computational complexity of interior-points
methods and can be shown to converge Q-superlinearly to
the optimum. Moreover, it requires performing at each step
only thresholding and eigenvalue decomposition steps, both
of which are amenable to fast, computationally efficient
implementations. In the second part of the paper we illustrate
the advantages of the algorithm using as an application
the problem of finding low rank interpolants from noisy
measurements corrupted with outliers, an issue central to
control-oriented identification methods.

II. PRELIMINARIES

For ease of reference, in this section we summarize the
notation used in the paper and provide some background
material on Augmented Lagrangian Methods.

A. Notation
MT Transpose of the matrix M
Trace{M} Trace of the square matrix M.
σi(M) ith largest singular value of M.
〈M,N〉 Inner product of square n × n matrices:

〈M,N〉 .= Trace{MTN}
‖M‖F Frobenious norm: ‖M‖2F

.= 〈M,M〉
M � 0 M is positive semidefinite.
‖M‖W,∗ (Weighted) nuclear norm: ‖M‖∗ =∑

i wiσi(M). In the sequel we will denote
‖.‖I,∗ simply as ‖.‖∗.

‖M‖1 `1 norm: ‖M‖1 =
∑
i,j |Mij |.

vect(M) Matrix vectorizing operator: m =
vect(M) is a vector formed by stacking
the columns of M.

mat(a) Vector to matrix operation:

mat(a) .=
[
a(1 : n− 1) a(n : 2n− 1)...

]
D(x, τ, w) Weighted soft thresholding operation:

D(x, τ, w) = max {0, sign(x)(|x| − τw)}

When applied to matrices, D(., ., .) acts
element-wise, by shrinking each element
in the matrix by the product of its cor-
responding weight w(i,j) times τ . In the
sequel, by a slight abuse of notation we
will use D(x, τ) when w = 1.

H(x, τ) Hard thresholding operation:

H(x, τ) = max {τ, x)}

`∞ space of vector valued sequences equipped
with the norm: ‖x‖`∞

.= supij |xi,j |.
H∞,ρ space of transfer functions analytic in

|z | ≤ ρ ≤ 1, equipped with the norm
‖G‖∞,ρ

.= ess sup|z|<ρ σ (G(z)). The
case ρ = 1 will be simply denoted H∞.

BX (K) closed K-ball in a normed space {X , ‖.‖}:
BX (K) = {x ∈ X : ‖x‖X ≤ K}.

B. Overview of Augmented Lagrangian Methods

Augmented Lagrangian Methods (ALM) are a class of first
order methods that seek to solve constrained optimization
problem of the form:

minXf(X) subject to h(X) = 0 (3)

by iteratively minimizing the augmented Lagrangian:

L(X,Y, µ) = f(X) + 〈Y, h(X)〉+ µ
2 ‖h(X)‖2F (4)

where Y and µ are a Lagrange Multiplier matrix and a
penalty weight, respectively. As originally shown in [28],
unlike classical penalty function methods, the algorithm
outlined below will converge to a local minimum (and hence
a global one in the case of convex problems), without the
need for taking µ→ +∞ (see also [29], [5]).

Algorithm II-B: GENERAL ALM

while not converged do
1. Xk+1 = argminXL(Xk,Yk, µk)
2. Yk+1 = Yk + ρh(Xk+1)
3. µk+1 = ρµk
end while

The original algorithm has been extended in a number
of ways to incorporate the ability to handle inequality con-
straints. Conn et. al. [15], suggested converting these con-
straints into equality ones through the introduction of slack
variables, and handling positivity of these at the subproblem
level. This idea has been further generalized to semidefinite
constraints in [26], [8], [7], [32], [4].

III. AN EFFICIENT ALGORITHM FOR STRUCTURALLY
CONSTRAINED NUCLEAR NORM MINIMIZATION

In this section we develop an efficient, ALM type algo-
rithm for solving general problems of the form:

minh,e1,e2 ‖SH(h)‖W,∗ + λ1 ‖e1‖1 + λ2
2 ‖e2‖22

s.t. d = Fh + e1 + e2

Ah− b ≥ 0
SQ(h) � 0

(5)

where W, λ1 and λ2 are given weights, d is a given data
vector and where SH , SQ, are given affine operators that
encapsulate the structural and semi-definite constraints of the
problem. Further, due to their affine nature, by using suitable
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defined matrices Sh and Sq, these operators can be rewritten
as:

SH(h) = mat(Shh + vh), SQ(h) = mat(Sqh + vq) (6)

To illustrate this fact, consider an example involving a
combination of Hankel and constant terms.

SH(h) =


h(1) h(2) 1 0
h(2) h(3) 0 1

1 0 h(1) h(2)
0 1 h(2) h(3)


Simple algebra shows that this operator admits a representa-
tion of the form (6) with

vh =
[
0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0

]T
Sh =

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1
0 1 0 0 1 0 0 0 0 0 0 1 0 0 1 0
1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

T

h =
[
h(1) h(2) h(3)

]T
(7)

Using the explicit expressions for ‖.‖W,∗, SH and SQ
and introducing slack variables z1 and z2, the optimization
problem (5) can be rewritten as:

minh,e1,e2

∑
i wiσi(mat(Shh + vh)) + λ1 ‖e1‖1 ...

...+ λ2
2 ‖e2‖

2
2

s.t. d− Fh− e1 − e2 = 0
Ah− b− z1 = 0, z1 ≥ 0
Sqh + vq − z2 = 0, mat(z2) � 0

(8)

Since this problem is convex, in principle it can be solved
by using Algorithm II-B. However, a difficulty here is that,
proceeding in this fashion will still require to numerically
solve a constrained optimization problem at each step (to
update X), thus negating the advantages of the method. The
main result of this section shows that problem (8) can be
solved by solving a related optimization problem where each
of the subproblems entailed in using Algorithm II-B admits a
closed form solution. Moreover, finding this solution requires
using only a combination of thresholding and eigenvalue
decomposition steps, both of which are amenable to fast,
efficient implementations. Hence the resulting algorithm is
capable of handling large sized problems. The key insight
is to add a new (vector) variable z3 and the associated
constraint

Shh + vh = z3 (9)

to the problemb, in order to decouple the norm minimization
portions from the structural constraints. In turn, as shown
below, this allows for finding computationally efficient closed
form solutions at each iteration. Further, in this approach the
structural constraints are not enforced in the intermediate
steps (but, due to convergence are guaranteed to hold for the

bthis is known as a “splitting variable technique” in the optimization
literature [13], [14], [16], [1].

optimal solution), resulting in substantial speed-up vis-a-vis
methods that enforce the constraint at each step.

The augmented lagrangian for the problem (8) with the
additional constraint (9) is given by:

L(h, e1, e2, z1, z2, z3,y0,y1,y2,y3, µ) = ...

...
∑
i wiσi(mat(z3)) + λ1 ‖e1‖1 + λ2

2 ‖e2‖22
+ < y0,d− Fh− e1 − e2 > +µ

2 ‖Ah− b− z1‖22
+ < y1,Ah− b− z1 > +µ

2 ‖d− Fh− e1 − e2‖22
+ < y2,Sqh + vq − z2 > +µ

2 ‖Sqh + vq − z2‖22
+ < y3,Shh + vh − z3 > +µ

2 ‖Shh + vh − z3‖22
s.t. z1 ≥ 0 mat(z2) � 0

Adding terms of the form of < yi,yi >, who do not
affect the minimizer, to complete the squares, leads to the
more compact form:

L(h, e1, e2, z1, z2, z3,y0,y1,y2,y3, µ) = ...

...
∑
i wiσi(mat(z3)) + λ1 ‖e1‖1 + λ2

2 ‖e2‖22
+µ

2

∥∥∥d− Fh− e1 − e2 + y0

µ

∥∥∥2

2

+µ
2

∥∥∥Ah− b− z1 + y1

µ

∥∥∥2

2

+µ
2

∥∥∥Sqh + vq − z2 + y2

µ

∥∥∥2

2

+µ
2

∥∥∥Shh + vh − z3 + y3

µ

∥∥∥2

2
s.t. z1 ≥ 0 mat(z2) � 0

(10)

As we show next, for each fixed µ,yi, the optimal value of
X .= (h, e1, e2, z1, z2, z3) that minimizes this Lagrangian
can be found by iteratively performing a sequence of thresh-
olding and eigenvalue decomposition steps.

Theorem 1: For fixed µ, yi, the minimizer of (10) can be
found by iteratively repeating the following update steps.

hk+1 = P(FTv0 −ATv1 − Sq
Tv2 − Sh

Tv3)
P = (FTF + ATA + Sq

TSq + Sh
TSh)−1

v0 = d− e1
k − e2

k +
y0

k

µ

v1 = −b− z1
k +

y1
k

µ
(11)

v2 = vq − zk2 +
y2

k

µ

v3 = vh − zk3 +
y3

k

µ

e1
k+1 = D(d− Fhk+1 − e2

k +
y0

k

µ
,
λ1

µk
) (12)

e2
k+1 =

µk

(µk + λ2)
v5

v5 = d− Fhk+1 − e1
k+1 +

y0
k

µk
(13)

z1
k+1 = H(Ah− b +

y1
k

µk
, 0) (14)
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z2
k+1 = vect(UH(D, 0)UT ); where

UDUT = svd(mat(Sqh + vq + yk
2

µk ))
(15)

z3
k+1 = vect(UD(Σ, 1

µk ,W)VT ) where

UΣVT=svd(mat(Shhk+1 + vh + y3
k

µk ))
W = diag{wii}

(16)

where D and H denote the soft and hard thresholding
operators, respectively.

Proof: Given in the Appendix
Iteratively repeating the steps above leads to the optimal
Xk+1, for given values of the Lagrange multipliers yki . Once
Xk+1 is available, the method proceeds as in the standard
ALM case, updating the Lagrange multipliers using:

y0
k+1 = y0

k + µk(d− Fh− e1 − e2) (17)
y1

k+1 = y1
k + µk(Ah− b− z1)

y2
k+1 = y2

k + µk(Sqh + vq − z2)
y3

k+1 = y3
k + µk(Shh + vh − z3)

and setting µk+1 = ξµk, for some ξ > 1. The complete
algorithm is summarized next.

Algorithm III: SRPCA ALGORITHM EALM

ξ > 1, µ0

h0 = d, e1
0 = 0, e2

0 = 0,z1
0 = 0, z2

0 = 0
z3

0 = 0, y0
0 = 0, y1

0 = 0, y2
0 = 0, y3

0 = 0
while not converged do (outer loop)

while not converged do (inner loop)
1. Solve hk+1 using eq. (11)
2. Solve e1

k+1 using eq. (12)
3. Solve e2

k+1 using eq. (13)
4. Solve z1

k+1 using eq. (14)
5. Solve z2

k+1 using eq. (15)
6. Solve z3

k+1 using eq. (16)
end while (inner loop)
7. Update the lagrange multipliers using (17)
8. µk+1 = ξµk

end while (outer loop)

Theorem 2: The sequence Xk generated by Algorithm III
converges to a solution of Problem (5). Moreover, L(Xk,yki )
converges as O( 1

µk ) to the optimal value of the objective.
Proof: Omitted due to space constraints, follows along

the lines of the proof of Theorem 1 in [3]

IV. AN ALTERNATING DIRECTIONS METHOD

While the algorithm above is guaranteed to converge
Q-linearly to the optimal solution, the exact minimiza-
tion of L in steps 1–6 could entail many iterations. Mo-
tivated by [6], we propose to avoid these iterations by
considering an alternating directions type algorithm, where
(h, e1, e2, z1, z2, z3) are updated only once in each itera-
tion. The entire algorithm can be summarized as

Algorithm IV: WEIGHTED SRPCA ADMM ALGORITHM

Initializations are the same as (III)
while not converged do

1. Run the inner loop of Algorithm (III) once.
2. Update the lagrange multipliers using (17)

end while

As shown in [2] the algorithm above also generates a
sequence Xk that converges to the solution of Problem (5).
Further, consistent numerical experience shows that updating
the weight µ at each step using a law of the form µk+1 =
ξµk leads to improved convergence properties, although no
formal proof of this fact is currently available.

V. APPLICATION: FINDING MINIMUM RANK
INTERPOLANTS

In this section we illustrate the advantages of the proposed
method by applying it to the problem of robustly identify-
ing the lowest order system, consistent with given a-priori
information, that interpolates a set of given experimental
measurements (or establishing that none exists). Specifically,
given N samples, corrupted by additive noise, of the time
response of an unknown system G, y(k) = [G ∗u]k + ηt(k),
k = 0, . . . , N , where ∗ denotes convolution, and where the
input u(k) is known, and the following a priori assumptions

1) G belongs to the class BH∞,ρ(K) i.e. the set of
exponentially stable systems with a stability margin of
(1 − ρ), and a peak response to complex exponential
inputs of K.

2) A bound on the measurement noise: ‖ηt‖`∞ ≤ ε
our goal is twofold:

1) Firstly, to establish whether or not the consistency setc:

T (y) .= {G ∈ BH∞,ρ(K) : yk = [G ∗ u]k + ηk,
‖η‖∞ ≤ ε}

is empty.
2) If T (y) 6= ∅, find the lowest order system G ∈ T (y).
Next, recall that (see for instance [27]), given a finite vec-

tor sequence {gk}Nk=1, there exists a system G ∈ H∞,ρ(K)
that has {gk} as the first N elements of its impulse response
sequence if and only if the following LMI holds:

L(g) .=

[
KR−2

(
Tg

N
)T

Tg
N KR2

]
� 0 (18)

where Tg
N denotes the (finite) Toeplitz matrix as-

sociated with the sequence {g} and where R =
diag[ 1 ρ ρ2 . . . ρNt−1 ]

In principle, model order constraints can be handled by
simply placing a constraint on the rank of the Hankel matrix
associated with the sequence {g}. Note however that this
does not guarantee that when the complete interpolant is
formed, its rank will equal that of the truncated Hankel

cThe diameter of this set e∗(y)
.
= d{T (y)} defines an intrinsic local

worst-case identification error, in the sense that this is the best that can be
achieved by any interpolatory algorithm.
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matrix. As shown next, this difficulty can be circumvented
by considering an augmented optimization problem. To this
effect, we recall next the following from [34], providing a
bound on the Hankel singular values of the interpolant:

Theorem 3: Given ε > 0, select n so that

2K
ρn+2

1− ρ
< ε

Define gTaug
.=
[
g0 . . . gN gN+1 . . . gn

]T
and con-

sider the following feasibility problem:

L(gaug)
.=

[
KR−2

(
Tn
gaug

)T
Tn
gaug

KR2

]
≥ 0 (19)

‖y −TN
gaug
‖∞ ≤ ε (20)

rank(Hn,n
gaug

) ≤ nred (21)

If this problem admits a feasible solution gaug , then the
Hankel singular values of the associated interpolant Gaug(z)
satisfy σHi (Gaug) ≤ ε for all i ≥ n.

Proof: Follows from Corollary 1 in [34]

A. Illustrative Examples

Combining Theorem 3 with the usual (weighted) nuclear
norm relaxation of rank [17], it follows that interpolants
with order arbitrarily closed to the minimum can be (ap-
proximately) found by solving a sequence of problems of
the form:

ming ‖H(g)‖∗,W + λ1 ‖e1‖1 + λ2
2 ‖e2‖22 subj. to:[

KR−2 T(g)T

T(g) KR2

]
� 0

y −T(g)u− e1 − e2 = 0

(22)

where we have replaced the hard bounds on the interpolation
error given by (20) with soft ones, and allowed for the
existence of outliers (the sparse signal e1). In the reminder
of this section we use the proposed algorithm to solve Prob-
lem (22) in several scenarios and compare its performance
against the results obtained using both conventional subspace
identification methods [23] and Hankel rank minimization.
In all cases we used as an estimate of the order of the
resulting interpolant the number of Hankel singular values
above 1% of the maximum. In addition, we used µ0 = 10−3

and ξ = 1.05 as the internal parameters of the augmented
Lagrangian method, and we initialized all variables to zero.
Experiment 1 –Noisy Data

In this example we compare the results obtained when
applying our algorithm (SDPNC), subspace identification
(SSID), and Hankel rank minimization (HRM) to the prob-
lem of identifying a system from noisy data. For this
experiment we used a second order system with poles at
z = 0.8 ± 0.51j and a single zero at z = −1. The
corresponding transfer function is given by

S(z) = (0.1z + 0.1)/(z2 − 1.6z + 0.9) (23)

The experimental data consisted of N = 20 samples of the
step response of this system, corrupted by 23% uniformly
distributed measurement noise. The a-priori information was

n Our Method(secs) SDP solver 1st iter. (secs)
86 13.8 469.4
96 17.3 771.5

106 21.3 1495.3
116 25.7 2331.4

TABLE I
RUNNING TIME COMPARISON

assumed to be ρ = (1.05)−1, K = 50 and ε = 0.3. Figure
1 shows the step responses of the system identified by the
proposed algorithm, using weights λ = 10000 and λ2 =
500. For comparison, we also show the results of subspace
identification and of Hankel rank minimization, obtained by
solving:

minh,e2 ‖H(g)‖∗,W + λ2
2 ‖e2‖

2
2

s.t. y −T(g)u− e2 = 0
(24)

with λ2 = 500. As shown in the figure, the system obtained
using SSID fits poorly the experimental data and is not
consistent with the a priori information, since it has poles
at |z| = 0.98 > ρ. Similarly, HRM leads to an open–
loop unstable system. The failure of these methods is due
to a combination of relatively large noise and poor damping,
coupled with the fact that neither one of them can guarantee
that the resulting interpolant will be analytic in a region
of the form |z| > ρ, with ρ given. For comparison, the
proposed method leads to a low order stable system that
interpolates the experimental data within the noise bounds
and is consistent with the a priori information.

Next, we compare the computational costs of solving
problem (22) using the proposed algorithm versus standard
interior point methods (in this case we used SDPT3). The
critical parameter determining computational complexity is
the number of variables, which in this case is related to the
horizon n. Running time comparisons between these two
methods as a function of n are given in Table I. As shown
there, the proposed algorithm outperforms SDPT3 by at least
one order of magnitude for low values of n and this gap
substantially increases with n. These figures were obtained
using MATLAB 7.13 on a Windows 7 64-bit machine with
a 2.7GHz processor and 24GB RAM.
Experiment 2 –Missing Data, Noise and Outliers

In this experiment we illustrate the ability of our method
to handle very challenging scenarios, characterized by a
combination of noise, missing data and outliers. In this case
we used N = 50 elements of the step response of system
(23), corrupted with 17% uniformly distributed measurement
noise, outliers (probability 25%) and missing data (proba-
bility 5%). This is intended to simulate a situation where
data is transmitted over a wireless channel, with a certain
probability of being substantially corrupted by interference
(outliers) or being dropped altogether. Fig. 2 compares the
results obtained using our algorithm (with λ = 100) against
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Fig. 1. Left: Step response data used in the experiments (blue, red and green denote the clean signal and the noisy data used in the experiments 1 and
2, respectively). Center: pole zero map of the identified systems for experiment 1 ((original (blue), SDPNC (magenta), SSID (green), and NNC (black)).
Right: step responses of the original (blue circles) and identified systems: SDNPC (magenta crosses), SSID (green stars) and HRM (black triangles)

those obtained using HRM and SSIDd. As shown there,
the proposed algorithm successfully identified a low order
interpolant. On the other hand, the systems identified using
SSID and HRM fit poorly the data.

Fig. 2. Impulse responses of the systems identified using different
approaches in Experiment 2. Blue line with circle markers: original signal.
Magenta lines with crosses: output of the system identified using SDPNC.
Green line with star markers: SSID. Black lines with triangular markers:
HRM

VI. CONCLUSIONS

Many problems of practical interest involve minimizing
the nuclear norm of a matrix subject to structural and semi-
definite constraints. Examples include robust identification
from noisy measurements, potentially corrupted with out-
liers (the time domain case leads to mixed Hankel/Toeplitz
structures, while the frequency domain involves Loebner
matrices) or moments based relaxations of constrained poly-
nomial optimization problems [21]. While in principle these
problems are convex and hence can be solved using conven-
tional SDP solvers, in practice, this approach is limited to

dsince SSID cannot handle missing data, for this algorithm we considered
a more benign scenario, with only noise and outliers but no missing data.

moderately sized problems, due to the poor scaling properties
of interior-point methods. Motivated by this difficulty, in
the past few years considerably attention has been devoted
to developing fast, scalable first order methods. However,
while capable of handing large size problems, up to now
applicability of these methods was limited by their inabil-
ity to handle structural and semi-definite constraints. The
main result of this paper removes this limitation, providing
a fast algorithm for solving a large class of constrained
nuclear norm minimization problems. Notably, this algo-
rithm requires performing, at each step only thresholding
and eigenvalue (or polar) decomposition steps, allowing
for fast, computationally efficient implementations. These
results were illustrated with both academic examples and
a non-trivial identification problem arising in the context
of vision-based tracking. As shown there, in all cases the
proposed algorithm resulted in substantial improvement, both
in computational time and memory requirements, over SDP-
solver based approaches.
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APPENDIX

A. Explicit Closed Form Expressions for the Solutions to the
Intermediate Optimization Problems.

At the beginning of the (k + 1)th iteration, the values
of e1

k, e2
k, z1

k, z2
k, z3

k,y1
k,y2

k,y3
k, µk are known and

the goal is to minimize L with respect to hk+1. Solving

∂L
∂h = 0 leads to (11). It is worth emphasizing that since P
is a constant matrix that depends only on the structure of the
problem, its inversion needs to be performed once, and not
at every step. Next consider the problem of minimizing L
w.r.t. e1. It is easily seen that the minimizer is given by

e1
k+1 = argmine1

λ1
µk ‖e1‖1 + ...

... 12

∥∥∥d− Fhk+1 − e2
k + y0

k

µ − e1

∥∥∥2

2

a problem whose explicit solution is given in [22], leading
to (12). Note in passing that by using the results from [33],
the. operator D() can be applied with a “mask” to handle
cases with missing data or outliers. The update (13) follows
from solving ∂L

∂e2
= 0.

Next consider the problem of minimizing L w.r.t. z1.
Taking into account only the terms that depend explicitly
on z1 leads to:

z1
k+1 = argminz1

∥∥∥Ah− b− z1 + yk
1

µk

∥∥∥2

2
s.t. z1 ≥ 0

a problem whose optimal solution is given by (z1)i =
max

{
(Ah− b− z1 + y1

µ )i, 0
}

, where (v)i denotes the ith

component of v, leading to (14). Similarly, minimizing L
w.r.t. z2, leads to the following optimization problem:

z2
k+1 = vect(argminz2

∥∥∥mat(Sqh + vq + yk
2

µk − z2)
∥∥∥2

F
)

s.t. mat(z2) ≥ 0

To obtain a closed form solution for this problem, note
that it is equivalent to

Z2
k+1 = argminz2 ‖D− Z2‖2F

s.t. Z2 � 0

where D is diagonal matrix containing the singular values of
mat(Sqh+vq + yk

2

µk )), and where we used the fact that ‖.‖F
is unitarily invariant. Clearly, the solution to this problem
is a diagonal matrix, with Z2

k+1
i,i = max{Di,i, 0}, leading

to (15). From a computational standpoint, performing this
step requires performing a svd, which could limit the size
of the problems that can be handled. This can be avoided
by using the method in [19] to replace it with a polar
decomposition step that requires performing only matrix
multiplication operations[20].

Finally, minimizing L w.r.t. z3 leads to

z3
k+1 = vect(argminz3

∑
i wiσi(mat(z3)) + ...

...µ
k

2

∥∥∥mat(Shhk+1 + vh + y3
k

µ − z3)
∥∥∥2

F
)

(25)
whose explicit solution is given by (16) [33]. Computa-
tionally efficient implementations can be obtained by using
partial svd tools or avoiding the svd step altogether, pro-
ceeding as suggested in [9]. Finally, it is worth emphasizing
that when SH() and SQ() coincide, then the z2 update
step can be removed and semidefiniteness and nuclear norm
minimization problem simultaneously handled proceeding as
in Theorem 16 in [25].
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