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Abstract- This paper addresses the problems of estimating 
the values of both the outputs and the internal signals for 
a class of Wiener systems consisting of the cascade of an 
unknown linear time invariant systems and a known, rational, 
generically non-invertible nonlinearity, based solely on past 
input/output data corrupted by noise. This situation arises in 
many scenarios of practical interest where an explicit a-priori 
model of the linear system is not available. Examples include 
extracting geometric 3D structure from a sequence of 2D 
images (structure from motion), and nonlinear dimensionality 
reduction via manifold embedding. The main result of the paper 
is a simple, computationally efficient algorithm that is capable 
of handling intermittent measurements and does not entail iden­
tifying first the unknown linear dynamics. Rather, the problem 
of estimating the internal signals and interpolating missing data 
is recast into a rank-constrained feasibility problem. Although 
this problem depends polynomially in the data, we show that, by 
appealing to classical results on moments optimization, it can 
be reduced to a rank-constrained Linear Matrix Inequality 
optimization and efficiently solved using existing techniques. 
The potential of the proposed approach is illustrated by solving 
structure from motion problems using real data. 

I. INTRODUCTION AND MOTIVATION 

Many processes of practical interests can be modeled as 
the output of a Wiener system, consisting of the cascade 
of a memoryless, static nonlinearity and a Linear Time 
Invariant (LTI) plant. Examples include domains as varied as 
communications [4], biology [2], nonlinear dimensionality 
reduction [21], and computer vision [14]. Consider for in­
stance the problem of estimating the 3D geometry of a scene, 
using 2 dimensional data generated by a moving perspective 
camera that has a focal length j and a principal point with 
coordinates (cu, cv ) . This situation can be modeled by the 
following system (see for instance [14]): 

(k+l .:.. 

Pkj .:.. 

Ukj 
Vkj 

A(+Bek [Xk ] 
Yk: = Cj(k 
Zkj 

jXkj _ C Zkj u, 
j Ykj _ C Zkj V 
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Here the pair (A, B) and the associated state vector (k model 
the 3D motion of the camera in response to the input ea, P kj, 
j = 1, ... , N, denotes the 3D coordinates of point Pj at time 
k, i = 1, ... , F, and (Ukj, Vkj) denotes the 2D coordinates 
of the image of P kj. Clearly, this model above is a special 
case of a Wiener system, where the nonlinearity is rational. In 
this context, the problem of reconstructing the 3D geometry 
of the scene can be formalized as a nonlinear filtering 
one: estimating Pkj from (Ukj, Vkj), potentially corrupted 
by measurement noise. In principle, this nonlinear filtering 
problem can be solved using the techniques proposed in 
[14], [8], [1], [6], [9]. However, proceeding in this fashion 
requires first obtaining a model of the Wiener system. Note 
that in the application above, if the camera is calibrated, the 
nonlinearity is perfectly known, and only the linear portion 
of the system (e.g. a pair (A, B) and the projection matrices 
Cj, j = 1, ... , Np) needs to be identified. However, as 
shown in [19], even this simpler case leads to NP-hard 
problems in the presence of persistent measurement noise. A 
further complication that prevents the use of classical filter­
ing techniques arises from the fact that data is often missing: 
not all points appear in all frames, due for instance to 
occlusion or misidentified correspondences. The goal of this 
paper is to develop a computationally tractable framework for 
data interpolation/estimation for a class of Wiener systems 
that embodies the main features of problem described above: 
an unknown linear component of the system and noisy, 
fragmented measurements. Our main result shows that in 
principle this problem can be recast into minimizing the rank 
of a matrix that depends polynomially on the measured data. 
As we show in the paper, exploiting some classical results 
on moment optimization [12] allows for recasting the prob­
lem into a rank-constrained LMI optimization that can be 
efficiently solved using existing techniques [7], [17]. These 
results are illustrated in a problem that has been the object 
of considerably attention in the computer vision community, 
3D reconstruction from video, where the proposed approach 
outperforms existing techniques. 

A. Notation 

Xk 
Ilxlloo 

II. P RELI M INA RIES 

kth element of a vector x. 
sup norm of x E Rn: Ilxlloo .:.. 

max IXkl l�k�n 

aTypically 'T/k contains the past values of the camera position, velocity, 
etc. 
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Space of vector sequences equipped 
with the norm: Ilxllfoo � sup Ilxilioo i 

AT conjugate transpose of matrix A. 
A >- 0 (t) A = AT is positive (semi)definite. 
A >- B (A - B) >- 0 
rank(A) rank of matrix A. 

Given a vector sequence {yd�!i-l, in the sequel we 
denote its corresponding Hankel matrix as: [Yl 

Y2 Hn,l(Y) � : 

Yn 

Y2 
Y3 

Yn+l 

Yl 1 
Y/+l 

Yl+�-l 
Moreover, Hn,n ( . ) will be simply denoted by Hn (.) 

III. P ROBLEM STATEMENT 

w 

e .� € + 
� 

Fig. I. Wiener System Structure 

y 

Consider the (discrete time) Wiener system shown in 
Figure 1 consisting of the interconnection of a LTI system 
G(z) and a memoryless nonlinearity 'IjJ(.). The corresponding 
equations are given by: 

�t 
Yt 

(g*e)t+Wt 
'IjJ(�t, t) + 'f)t (2) 

where 9 is the convolution kernel of G(.), * denotes con­
volution and the signals e E Rne and y E Rny represent 
a known input and its corresponding output, corrupted by 
measurement noise 'f). The signal W represents an (unmea­
surable) disturbance, that can be used to model for instance 
noise at the input of the nonlinearity, or temporal correlations 
in the outputs of the nonlinearity. Finally, W ( ., t) represents 
a memory less, potentially time-varying nonlinearity. In this 
paper we will further assume that W is rational, e.g. 

P(x, t) w(x, t) = 

Q(x, t) 
(3) 

where P and Q are multivariate time-varying polynomials 
of the form: 

P(x, t) (4) 

where xa � x;n' X�2 . • .  x�n. Then, in its simplest form, 
the problem addressed in this paper can be stated as: 

Problem 1: [Consistency and Estimation] Given: 

1) A system of the form shown in Figure 1 consisting of 
the interconnection of a known nonlinearity of the form 
(3) and an unknown linear plant G, with McMillan 
degree bounded by some known ng• 

2) A priori information consisting of a set membership 
descriptions of the measurement noise 'f) E N and the 
disturbance wE W. 

3) A posteriori experimental information consisting of nm 

input/output measurements {ei, Yi}7=k-n=+1' 
Then: 

I) Establish whether the experimental data is consistent 
with the a-priori assumptions. 

2) If so, estimate the values of �i and iii, i = 1, . . .  , t. 
That is, if the model is not invalidated by the data, we 
want to estimate the values of both, the external and internal 
signals, based on the measurements Yi. A variation of this 
problem that will be discussed later includes the case where 
the measurements Yi are not available for i in some set I. 

A. The Problem of Moments 

The key step in establishing our main result is to transform 
the problem from an optimization over noise sequences to 
an optimization over probability measures. To this effect, we 
will use several classical results establishing the necessary 
and sufficient conditions for a given sequence to be the 
moments of a probability distribution. For completeness, 
these results are briefly quoted below. Details are given for 
instance in [5], [12]. 

Let K be a closed subset of �D and let a be a multi-index 
(i.e. a END) representing the powers of a monomial in D 
variables. Given a sequence of scalars {ma }, the K-moment 

problem is to determine whether there exists a probability 
measure p, supported on K such that it has each ma as its 
ath moment. That is: 

ma = E/L(xa) = 1 xap,(dx) (5) 

where xa 
= xr' X�2 • • •  X'tJD. In particular, in the sequel we 

are interested in probability measures that are supported on 
balls of radius E centered at the origin. Next, we recall a 
necessary and sufficient condition for the existence of such 
a measure [15]. 

Theorem 1: Let p = La caxa E P denote a generic 
(multivariate) polynomial. Given a sequence {ma }, there 
exists a linear functional E: P -) R such that 

(6) 

and {ma} are the moments of a distribution supported on 
I Ixl12 ::::: E, if and only if the following two conditions hold 
for all pEP: 

E (p 2) 2: 0 

E((E2 -(xi + ... + Xb»p2) 2: 0 

(7) 

(8) 
Remark 1: The conditions given in the above theorem 

consist of infinite semidefinite quadratic forms which can 
be converted into (infinite) linear matrix inequalities (LMIs) 
in the moment variables {ma}. 

Next, we briefly discuss how to build a matrix represen­
tation of a given sequence m that contains all the moments 
up to order 28. Assume for simplicity that the moments are 
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ordered according to a graded reverse lexicographic order 
(grevlex) of the corresponding monomials so that we have 

o = a(1) < ... < a(M8), where M6 � ( 8 � D ) is the 

number of moments in )RD up to order 8. Then, the moment 
conditions take the form: 

where 

L(6)(m) to 
K(6)(f, m) to 

L(6)(i, j) = mo:(i)+o:(j) for all i, j � M6 

(9) 

K(6)(i, j) = (f
2

mo:(i)+o:(j) - mo:(i)+o:(j)+(2,O, ... ,O)-

... - mo:(i)+o:(j)+(O, ... ,o,2))for all i, j � M6-1 

It can be shown [12] that the linear matrix inequalities (9) 
are necessary conditions for the existence of a measure 
J.L supported in the f-ball that has the sequence m as its 
moments. Moreover, as 8 i 00, (9) becomes equivalent to 
conditions (7)-(8) in Theorem 1; hence it is (asymptotically) 
sufficient as well. Thus, increasing the size of the moment 
matrices yields progressively better finite-dimensional ap­
proximations to the infinite dimensional conditions (7)-(8) 
[12]. It is also worth noting that if as 8 increases, the rank 
of the moment matrices stops increasing, the so-called flat 

extension property ([5]) is satisfied. In this case, the finite 
dimensional conditions (9) corresponding to this value of 8 
are necessary and sufficient for the existence of a measure 
supported in the f ball. 

IV. CONSISTENCY AND ESTI M ATION AS A RANK 

CONSTRAINED FEASIBILITY PROBLEM 

Next, we show how Problem 1 can be reduced to a rank 
constrained feasibility form. Given an input/output sequence 
{ek,ydk=l' define the consistency set: 

T(y) � { {{k}k=l: {k = (G * e)k + Wk 
Yk = N({k, k) + 'fJk 

for some sequences 'fJk E N, Wk E Wand some 

LTI system G with McMillan degree ng } 
Intuitively, this is the set of all (unknown) inputs to the 
nonlinearity that are compatible with both, existing a-priori 
information and a-posteriori measurements, and thus indis­
tinguishable based on the existing data. It is well known 
that, under mild conditions [16], existence of an LTI system 
G with McMillan degree ng that interpolates a given input 
output sequence (ek,ek)k=l with m 2:: 2ng is equivalent to 
the following rank condition: 

rank [H(e, e)] = ng + ne, H(e,e) � [:�!�] 
where H(e) and H(e) denote the Hankel matrices corre­
sponding to the input and output sequences, respectively, 
and ne � rank[H(e)] . As we show next, this fact allows for 
recasting Problem 1 into a feasibility one, albeit one where 
the constraints depends polynomially on the measurements. 

From equations (2) and (4), it follows that the input to the 
nonlinearity satisfies 

(10) 

Thus, establishing consistency and finding an admissible 
sequence {k reduces to the following problem: 

Problem 2: [Feasibility] Find admissible sequences W E 
Wand 'fJ E N such that: 

rank [HT (e - w,e)] � ng + ne 
subject to (10) 

(11) 

A difficulty with the above formulation is that while H is 
affine in Wk, it depends polynomially on 'fJk, through (10) . 
However, as we show next, (11) can be recast into a rank 
constrained feasibility problem, where all the constraints are 
affine in the optimization variables. 

Theorem 2: Assume that the measurement noise is char­
acterized by an £00 bound, e.g. N = {'fJ: i i'fJii£oo � f}. Then, 
the feasibility problem (11) is equivalent to finding a point 
in the following set 

rank [Mt(m)] � ng + ne 
N(mi) = 0 i = 1, ... , t 

Li(mi) to, i = l , ... , t  
Ki(f, mi) to, i = 1, ... , t 

rank[Li(mi)] = 1, i = 1, ... , t  

(12) 

(13) 

(14) 

(15) 

(16) 

where N � YkE(Q(ek, k)- E (p(ek ' k)), M � E(Ht)b, and 
Li and Ki are the moment matrices, defined in (9), of the 
joint probability distribution of ek and 'fJk which is also used 
to compute the expected values. 
Proof. Let (k = [a 'fJIV. Note that, in the feasibility prob­
lem above, the matrices do not contain any cross moments 
between (i and (j, i =f. j. Hence, one can consider the 
distribution of (i as being independent from the one of (j 
for i =f. j. Furthermore, the constrains 

imply that we are only considering distributions whose 
support contains only one element. Therefore, feasible so­
lutions of the inequalities in the theorem above are moment 
sequences mi corresponding to atomic distributions whose 
mass is concentrated at some point (; , i = 1, ... , t. This im­
plies that, for any feasible distribution, E[J((j)] = f('1) for 
any function f(·). Hence, (; solve Problem 2. Conversely, 
if (; , i = 1, ... , t, is a feasible solution for Problem 2, then 
the moment sequence of an atomic measure concentrated at 
(; , i = 1, ... , t, is a feasible point for the inequalities in the 
theorem. [] 

The rank constrained LMI problem (12)-(16) can be 
solved directly using LMIRank [17], or, alternatively using 
the convex relaxation of rank proposed in [7]. 

bHere the expectation operator E acts elementwise on H(e) = E(:i:+w). 
That is, M is constructed by replacing all the monomials in e in H(e) with 
the corresponding moments. 
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V. I L L USTRATIVE EXAM PLES 

Next we illustrate our approach using several examples, 
including the cases of missing measurements and randomly 
switching nonlinearities. For simplicity, in all cases the input 
was chosen to be an impulse. 

A. Estimation in the presence of noise 

In this example we considered a Wiener system composed 
of a randomly generated 4th order system cascaded with the 
nonlinearity w's(�) = �!��. The goal was to estimate � and 
fj from the measurements y = fj + 77, with 117711£00 :::; 0.05, 
roughly corresponding to 6% noise level. Figures 2 and 
3 show the noiseless (fj) and noisy (y) outputs and the 
true (blue) and estimated (red) �. As illustrated there, the 
algorithm is able to recover �, with a maximum error of 
about 2%. 

Noisy and Noiseless Nonlinearity Outputs 

-0.1 

_1L-�--�--��--�--��--�--�� 1 10 11 
time 

Fig. 2. Noiseless (blue) and noisy (red) measurements for Example 
V-A 

True and Estimated Nonlinearity Input 

time 
10 11 

Fig. 3. Actual (blue) versus estimated (red) � (input to the 
nonlinearity) for Example V-A 

B. Interpolating Missing Data 

Next we show the ability of our approach to handle 
missing data. To this effect we considered the same system 

as before, but with 4% measurement noise, 7% process noise 
and 27% of the measurements missing. Figures 4 and 5 show 
the measured and reconstructed data, respectively. As seen 
there, our approach is able to successfully reconstruct e, with 
about 5% error. 

Nonlinearity Output Before and After Measurement Noise and Missing Points 
-0.1 

time 
10 11 

Fig. 4. Y (blue) and y (red) for Example V-B. Red circles indicate 
measurements used in the reconstruction 

True and Estimated LTI Outputs 
-1r-�--�--��--�--��--�--�-' 

time 

Fig. 5. True (blue) versus estimated (red) LTI System Outputs for Example 
V-B 

C. Randomly Switching Nonlinearities 

Next, we consider the case of a switching Wiener system, 
where the nonlinearity switches randomly, at unknown times, 
amongst those on a given, known set. As we show next, this 
case can be also handled by our framework, with minimal 
modifications. For simplicity, we will assume that the system 
switches between two nonlinearities WI(�) = ����� and 

W2(�) = �����, and that perfect output measurements are 
available. However, both assumptions can be easily removed. 
Since at any given time instant either WI or W2 is active, then 
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the following constraint must hold at all timesc: 

o (Yk - Wl(�k))(Yk - W2(�k)) <¢==} 
o y�Ql(�k)Q2(�k) - Yk(Pl(�k)Q2(�k) (17) 

+ Ql(�k)P2(�k)) + Pl(�k)P2(�k) 
Clearly, the constraint above can be incorporated to the 
optimization problem (11) as an affine constraint by con­
sidering the appropriate moments. This idea is illustrated 
next using a randomly generated second order system cas­
caded with the switching nonlinearities Wl(�) = If and 

W2(�) = ¥ leading to the following equivalent constraint: 

(y
2-1)e-2y�+ 1 = O. Figures 6 (a) and (b) show the output 

of the randomly switching nonlinearity and the switching 
times (here red and green indicate that Wl(') or W2(') was 
active, respectively). Finally, Figure 6 (c) shows the result 
of applying our algorithm. Note that once � is estimated, 
detecting the switching times merely entails comparing Y 
against Wi(�)' i = 1, 2. In this particular example, this leads 
to exact recovery of the switching times. 

VI. ApPLICATION: 3D STRUCTURE FRO M  PERSPECTIVE 

VIDEO 

Fig. 7. 3D Motion of a rigid object is determined by the trajectories 
of 4 points 

In this section we apply our approach to the structure from 
motion (StM) problem discussed in the introduction: extract­
ing the 3D geometry of moving objects from a sequence 
of 2D images taken with a perspective camera. Existing 
approaches can be roughly divided into geometric based and 
filtering based ones. Geometric methods (see for instance 
[18], [3], [13], [10]) use an iterative approach to determine 
a set of projective depths that forces a measurement matrix 
containing the coordinates of the tracked points to have at 
most rank 4. However, this approach yields only the affine, 
rather than Euclidian geometry, that is, the 3D coordinates 
are recovered up to an axis dependent scaling. Obtaining the 
3D geometry from these coordinates entails solving a chal­
lenging non-linear, non-convex optimization problem. On 
the other hand, filtering-type approaches require either the 
availability of a motion model for the target [14], [8], [6] or 
the solution to a non-linear optimization (bundle adjustment) 
problem [11]. As we show below, these difficulties can be 
circumvented by reformulating the problem as the estimation 

CThis constraint is similar to the hybrid decoupling constraint used in 
GPCA [22] 

of the internal signals in a Wiener system with an unknown 
linear component, and solved using the framework developed 
in this paper. Preliminary results along these lines were 
presented in [20] for the case of noiseless measurements. The 
starting point is the fact that the 3D trajectories of points Pi 
on a rigid body satisfy a model of the form: 

Pti-Ot={£[Poi-Oo]}t , t= 1,2,... (18) 

for some point 0 (the center of the motion), where Pti 
denote the coordinates of point Pi at time t, and where 
£ is some LTI operator. For example, for a constant rota­
tion R about a moving axis we have {£ [Poi -OO]}k = 
Rk [Poi -00], Further, note that the 3D trajectories of all 
points in the rigid are fully determined once the trajectories 
of 4 points are given (see Figure 7). Thus, in the sequel we 
concentrate on recovering the trajectories of 4 points. Once 
this is accomplished, the trajectories of the other points can 
be recovered (frame by frame) from the rigidity constraints 
IlPti -Ptjl12 = constant. Next, given two points Pi,Pj, 
consider the trajectory of the difference eij (t) � P ti -P t/. 
Since Pi, P j belong to the rigid, it follows from (18) that 

eij(t) can be modeled as the impulse response of a system 
of the form: 

Xij (t) 
eij (t) 

AXij(t) + BijJ(t) 
CXij(t) 

(19) 

where the triple (A, Bij, C) provide a state space realization 
of the operator £ in (18). Note that the model can be chosen 
so that all matrices except Bij are independent of which 
pair of points in the rigid is selectede. It follows that, given 
4 points, the motion of the 3 difference vectors PI -P j, j = 
2, 3, 4 can be modeled as the impulse response of a system 
with the following (not minimal) state space realization: 

As 
Cs 

diag(A, A, A), ; Bs � [B12, 
[C C C] 

in the sense that P tl -P tj is given precisely by its output 
at time t in response to an impulse applied at the jth 
input. Further, if the pairs (A, B1j) are controllable, then 
the realization above is also generically controllable, but 
unobservable. In fact, it can be easily shown that the rank of 
the corresponding Hankel matrix satisfies rank(H) = n, the 
rank of the observability matrix of the pair (A, C) . Thus, it 
follows that the StM problem can be recast into the feasibility 
form (11), by considering a Wiener system with 3 inputs 
and 2 outputs (the difference of the 2D image coordinates 
(Ul,Vl) -(Uj,Vj)) and where the nonlinearity is given by: 

Uti 
Vti 

f.Kti -c z� u, 
af-.li. -C Zti v 

(21) 

dlt can be shown that considering the Hankel matrix of the points 
instead of differences leads to direction depending scaling. The proof is 
omitted for space reasons, but intuitively hinges on the fact that, given x, 
miny rank([Hx aHy]) is the same for all a i= 0, but miny rank([Hx­
aHy]) = 0 only for a = l,y = x. 

eThis is accomplished by including all the information about the initial 
condition of Pi - P j in Bij. 
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Outputc/Na-oIine-arity Sw�clOOgT1freS , 

2 

, 
, r r II r , 

I I II 0 j 
.'0:-----------;-----:;:-------:' 

(a) (b) (c) 

Fig. 6. Output y and switching times for Example V-C: (a) Blue: measured output y, red and green, values of \{Id(.;) and \{Ir2(';), 
respectively. (b) Nonlinearity switching times: a marker at (k, i) indicates that at time k, \{Id(.;) is the active nonlinearity. (c) Actual and 
estimated values of .;. 

where (Xt,i, Y (t, i), Z(t, i)) denote the 3D coordinates of 
point Pi at time t. Note that in this application in general 
a priori information about the order of the linear subsystem 
is not available. However, from the controllability analysis 
outlined above it can be shown (see [20] for details) that 
the correct 3D geometry corresponds to the minimum order 
interpolant. Thus, this geometry can be recovered from the 
2D measurements by solving a slightly modified version of 
Problem (11) that minimizes the rank of a Hankel matrix 
formed by placing side by side (rather than stacking on top 
of each other) the Hankel matrices corresponding to each of 
the outputs of the linear system. Finally, note that in this 
particular case the nonlinearity is homogeneous of degree 
zero, e.g. (X, Y, Z) and f3(t)(X, Y, Z) lead to the same pair 
(u, v) . Thus, this approach can recover that 3D geometry 
only up to a time varying scaling factor. Nevertheless, since 
rigid motion preserves distances, the actual 3 D geometry 
can be recovered from this data, up to an overall, time­
invariant, scaling factor, by simply scaling the solution by 
f3(t) = IlPtl - Pd· 

Next, we use real data to compare the performance of the 
proposed approach against two standard algorithms HTSFM 
[10] and MHSFM [13] for solving perspective SfM prob­
lems. The 2D data was generated by projecting the noisy 

3D coordinates of special markers attached to an umbrella 
and to a human sitting on a swivel chair that were measured 
using a VICON motion capture systemf as shown in Figure 8. 
Comparisons between the 3D reconstructions and ground 
truth are displayed in Figures 9 and 10 and quantitative 
results are summarized in Table I. 

TABLE I 

3D MEDIAN ERROR (IN MM). 

Rank M inimization 
3.50e+1 
4.10e+1 

fit should be noted that the objects used in these experiments are flexible. 
Furthermore, the markers are about lcm. in diameter and hence have a 
significant depth which affects the measurement of their location as the 
object moves in front of the motion capturing system. 

(a) (b) 

Fig. 8. (a) Umbrella (b) Human on a chair. 

(a) (b) (c) (d) 

Fig. 9. Frames 1, 6 and 12 of the umbrella sequence (a) and 3D 
structure recovered using (b) Rank Minimization, (c) MHSFM and 
(d) HTSFM. 

VII. CONCLUSIONS 

In this paper we considered the problem of estimating 
the values of both the output and the internal signals for 
a class of Wiener systems consisting of the cascade of an 
unknown linear time invariant system and a known, rational, 
generically non-invertible nonlinearity, based solely on past 
input/output data corrupted by noise. This situation arises 
in many scenarios of practical interest where an explicit 
model of the linear system is not available a priori. In 
principle this problem could be solved using a two-tiered 
approach, identifying first the plant and then designing a 
filter proceeding for instance as in [14]. However, as shown 
in [19], the problem of identifying the linear portion of 
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fl <> f�/J r;; <; 
C9 (# ()/jI 

:::'. <J=;o :We? &@ 
(a) (b) (c) 

Fig. 10. Frames I, 7, 14 frames of the human on a chair sequence 
with ground truth data (blue) superimposed with 3D structure 
(red) recovered using (a) Rank Minimization, (b) MHSFM and (c) 
HTSFM. 

a Wiener system, even when the nonlinearity is perfectly 
known, is NP-hard. The present paper avoids this difficulty 
by exploiting results from the theory of the moments to 
recast the problem into a rank-constrained LMI feasibility 
form that can be efficiently solved using existing relaxations. 
As shown in the paper, the resulting algorithm can also 
handle the case where some of the data is missing. These 
results were illustrated using both academic examples and 
a challenging problem in computer vision: reconstructing 
the 3D structure of a moving object from a sequence of 
two dimensional images, taken with a perspective camera. 
As shown here, a rank-minimization approach based upon 
the idea of recasting the problem into a Wiener's system 
estimation form is able to recover this geometry, without 
the need to have an explicit model of the object motion, 
outperforming existing techniques. 
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