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Abstract 

In this paper we consider the problem of opti- 
mizing the ' H Z  norm, while keeping the L1 norms 
of some other transfer functions under specified 
levels. We show that the optimal closed-loop 
impulse responses of transfer functions in the 
constraints have finite support, and thus non- 
rational Laplace transforms. To solve the diffi- 
culty of implementing non-rational controllers, 
we propose a method for synthesizing rational 
controllers with performance arbitrarily close to 
optimal. 

1 Introduction 

Many control problems involve the optimization 
of certain performance measures, in addition to 
the stabilization of the system. Often mini- 
mization of a single performance index is not 
enough to capture several, perhaps conflicting de- 
sign specifications, leading to a research effort 
aimed towards designing multi-objective feedback 
controllers, capable of satisfying multiple perfor- 
mance specifications (see for instance [4, 81 and 
references therein). In this paper we consider the 
problem of optimizing the 7 i z  norm, subject to 
L1 constraints, leading to a mixed 7i2/L1 prob- 
lem l .  The discrete time version of the problem 
was studied in [9] in the SISO case, and [7] for 
MIMO systems (see also [6, 11, for the SISO d1/7iz 
and Cl/'H2 problems). In this paper we explore 
the continuous-time counterpart of the problem. 
The main results of the paper show that the opti- 
mal solution has non-rational Laplace transform 
even if the original plant is rational, and propose a 
Euler Approximating System based rational con- 
troller synthesis method. 

'This work w m  supported in part by NSF under grant 

'This problem can also be motivated as an optimal 7-12 
ECS-9625920. 

problem subject to robustness constraints. 

2 Notation and System Preliminaries 
The notations are standard. ' H p  ('Hrxn), L, 
( L r x n ) ,  and 4 (q"") are the standard no- 
tations for the commonly used Hardy and Ba- 
nach spaces. AM denotes the space of all purely 
atomic measures on R+, i.e., AM = (h ,h ( t )  = 
Cr=ohd(t - t t ) , { h d  E t i }  with l l h l l ~ ~  A Cr=o I h k l .  A denotes the space whose elements 
have the form h = hL(t)+CF=ohh:6(t-tk) where 
hL(t) E L,(R+),  (h;} E t 1 ,  and t k  2 0 (i.e., A = 
AM x Li (R+) ) ,  with llhll~ IlhLll~cl + IlhiIIt,- 
2 ( z )  (Z(s)) denotes the 2 transform of a right 
sided real sequence z = ( ~ ( k ) } ~ = ~  (the Laplace 
transform of a function z( t )  on R+).  

It is well known that the set of all achievable 
internally bounded-input bounded-output stable 
closed-loop maps is given by 

0 = {O E LYZxnw(R+) : There exists 
Q E LYUXny(R+) s.t. @ = H - U * Q * V} 

where H E LYsXnw(R+), U E C;tXnY(R+),  
and V E LYYxnw(R+) are fixed maps that de- 
pend on the plant P, and Q E LYYXnY(R+) is a 
free parameter. In the sequel we-assume, with- 
out loss of generality [3], that U and V have 
full column and row ranks respectiveiy. L$ 
the Smith-McMillan decomposition of U and V 
given by $ = LUMURU and P = L v M v R v ,  
where Lo E L~zX"s(R+), Ru E LTUXnY(R+), 
LV E LYYXny(R+), and RV E L~wXnw(R+) are 
unimodular matrices. Mu E ClnzxnY(R+)  and 
Mv E LYyxnw(R+) can be written as 

- A A  A h 6  

h 7 3 
MV = (diag{ %, . * * ,  =?} O n , x ( n w - n y ) )  

where { G , & }  and {q,$;} are coprime monk 
polpomiaj pairs. Let SUV denote the set of zeros 
of U and V in the +xed  cght half plane. We as- 
sume that neither U nor V have zeros on the j w  
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axis. For so E SUV define, au,(s,) = multiplicity 
of so as a roots of 8, av,(so) & multiplicity of so 
as a roots of q. Also define the polynomial row 
and column vectors 6; and pj as Zj t (E;‘);, 
6 G (gvl) j ,  where ( M ) i  and ( M ) j  denote the 
ith row and j th  column of the matrix M respec- 
tively. Further denote by aip and pj4 the pth 
column of aj and qth row of p, respectively, and 
define Fijks. E p , x n w  

A 

m (R+) by, 

for 1 5 p 5 n,, 1 5 q 5 %, k = 0 ,  ..., acr,(s,) + 
avj(s0) - 1, i = 1, ...,n,, and j = 1, ..., nyl where 
( . ) ( k )  denotes the k t h  derivative with respect to s. 
Finally, define Gaiqt E L 7 i x n w ( R + )  for n, + 1 5 
i 5 n,, 1 5 q 5 n, and t E R+, and Gpjpt E 
p x n W  ( R + ) f o r n y + 1 1 j 5 % ,  1 5 ~ 5 %  
and t E R+ by, 

)IT 
Gaiqt(1) A (On,x(q- l )  4 ( t  - 2) On,x(nw-q 
Gpjpt(1) ( O n w x ( p - l )  D j ( t -  1 )  Onwx(n,-p)) 

Theorem 1 [SI Define RFijkso := Real(FiJkao) 
and IFi jkso  = Imaginary(FiJkae)  and assume 
that SUV c i n t ( R H P ) .  9 E C 7 x X n w ( R + )  is 
achievable if and only if the following conditions 
hold: 

< 9, RFijk-’. >=< H ,  RFjjkao > 
< 9, I F i j k b  >=< H ,  IFijka. > ( l )  

for  so E Svv,i = 1, ..., n , , j  = 1 ,... ,%, and k = 
0 ,  ..., a ui(so) + avj(s,) - 1, 0nd 

(2) 
< 9, GP,qt >=< H ,  Gaiqt > 
< @ , G p j p t  >=< H,Gpjpt > 

for i = n, + 1, ..., n,, j = % + 1, ..., G, q = 
1, ...,%, p =  l,...,n,, a n d t  E R+. 

3 The Mixed %z/C1 Control Problem 

3.1 Problem Formulation 
Define the following set of indices: 

N ,  = ( 1 , .  . ., n,,,}, N, = { l , .  . ., n,} 

S: the subset of N ,  corresponding to rows 
of 9 subject to an C1 constraint. 
M: set of indices (i, j )  of transfer functions 
appearing in the objective. 
N: set of indices (i, j )  of transfer functions 
appearing in the C1 norm constraint. 

- 

- 

M N  G z n x :  functions appearing both 
in the objective and the constraints. 
M f M\MN: set of indices (i, j) such that 
the @ j j  appears only in the objective func- 
tion. 
N G x \ M N :  set of indices (i, j) such that 
9;j appears only in the constraint. 

Then the problem can be precisely stated as: 

Problem 1 Given the FDLTI plant P shown in 
Figure I ,  find: 

and the corresponding controller K ,  where 

where, for each p E S, N p  denotes the elements 
of the pth row subject to  4 constraint. 

Figure 1: The generalized plant 

We will assume that n, = nu and that ny = %, 
i.e., “one-block” category, where only the “zero 
interpolation” constraints (the first set of condi- 
tions in Theorem 1 )  are present [3]. However, the 
assumption can be relaxed to two and four-blocks 
via delay augmentation. We will further assume 
that for all ( p ,  q )  E N ,  x N ,  , the transfer function 
GPq appears at least in the C1 constraint or in the 
objective function ’. 
3.2 Primal and Dual Problems 

Problem 2 (The Primal Problem) 

1.1 = inf*er7{E(p,q)Ez II@pqllka} 
3.t. < 9, Fijks. >=< H ,  Fjjka. >e bijks, 

for  so E SUV, i = 1 ,...,nu, j = 1 ,... ,%, and 
k = 0 ,  ..., B U ; ( S , )  + u ~ , ( s , )  - 1. 

2This can always be assumed without loss of generality 
by adding, if necessary, artificial constraints with arbitrar- 
ily high 7 
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Let c, h CsoESvv Cy:, ~ ~ ( 3 ~ )  + avj(sO) 
and cn denote the total number of zero interPo- 
lation and L1 constraints respectively. Define 

4 Rational 312/L1 Controller Synthesis 
From an engineering standpoint, given the difi- 
culty of implementing non-rational transfer func- 
tions, this motivates the following problem: 
Problem 4 (Rational 312/L~,)  A h {@n.xnw : apq E 312 V ( p , q )  E M, 

@ p q  E A V(Pl 4) E N, @ p q  ' 312 n c1 V(P14)  ' M N )  

Then, Lagrange's duality theorem [5] yields the 
following dual problem: 

Problem 3 (The Dual Problem) where RI?, denotes the subspace of r7 formed by 
functions having real rational Lzplace transforms, 
and, given E > 0 ,  a controller K ( s )  such that the 
corresponding closed-loop transfer function aR E max 

BER=I,B>O,~€RC~ '(" ') P =  

(3) 

where gp (an  element of g E Re-) and Yijkao (an 
element of y E Re*) are the Lagrange multipliers 
corresponding t o  tl and zero interpolation con- 
stmints respectively. 

Theorem 2 If the  solution P ( t )  ezists, then  

Corollary 2 p = pR. 

Given the continuous-time system: 

A B  
G(3) = (+) 

its EAS is defined as: [2, 11: 
C.b = m = 4 C ( , , q ) € M  so" -@;q(t)dt 

I + T A  T B  + C ( p , q ) E M N  lo" -@:q(t)dt G E ( z )  = (+) (4) + E. . id. yi jksabiJks~ - C p E S  g P 7 P l  

Remark 1 From Theorem 3 it follows that the 
EAS based method can be used t o  solve problem 
4,  provided that the corresponding discrete-time 
problem Can be 

In the sequel, we show that these problems can 
be solved by using the algorithm proposed in 
[7], provided that it is appropriately modified so 
that the resulting closed-loop system is strictly 

continuous-time system has a finite 312 norm. 

vt E a+, where ZPq(t)  
Furthermore, the optimal 
(MN) U M .  

Cj,j ,k,a,yijka.Fi'kd"(t) .  
is unique ;(p, q )  E 

3.3 Structure of the Optimal Solution 

Lemma 1 Assume that the L1 constraints are 
feasible. Then, f o r  each p such that the ' O r -  

responding L1 
T E R+ such that @gq(t) = 0, V 4, t >_ T .  

~ ~ n s t T a i n t  is active, there ezists proper. This guarantees that the corresponding 

Corollary 1 Except in the trivial case where 
all the L1 constraints are inactive, the optimal 
'&/Cl closed loop transfer matriz and the opti- 
mal controller contain at least one element with 

Consider the 3 1 2 / f ? l  problem for the EAS system. 
All internally stable closed-loop maps are given 
by @ E  = - uE * QE * vEl where H E  E ~ z x n w ,  

uE E qzxnu, and vE E f?TnXnw are the EAS of 
a non-rational Laplace transform. 
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H, U ,  and V respectively, and QE E .!~.'Xny(R+) 
is a free parameter. The 3 C 2 / t l  problem for the 
EAS system is given by, 

( 6 )  
P E  = inf*aEr,{&p,9)cXZ II@EpqIIj2} 

subject to < @ E ,  F 2 k X 0  >= bijkX0 E 

A, E A u v , ~  = 1, ..., h , j  = l , . . . , % , k  = 
0, . . . ,~(T,(A~) + uvj(A0) - 1. In order to have fi- 
nite X 2  norm, must be strictly proper for all 
- (P, !I) E zi or s E p q ( m )  = @ E p q ( O )  = 0 v(Pi 4) E 
M. This results in the following problem, 

P E  = inf*a€r7{x(p,g)~XZ I I@EPqII ja}  

A 

subject to < @ E ,  F 2 k X o  >- - E  bi jkxa  (7) 
and @ E ~ ~ ( O )  = 0 V(p,  q )  E 

Note each element of 8 is given by: 

h 

G E p q  = 2 E p q  - GEpmQEmnVEnq 
m=l n = l  

In the case where i ? ~ ~ ~  and at least either 
or V E , , ~  %e strictly proper for all pairs (m, n) and 
( p ,  q )  E M, the additional condition is automati- 
cally satisfied, and (7) is equivalent to, 

h 

P E  = inf IISL * @EpqIILaa (8) 
*Er ,  

( P A ) E P  

subject to 

CqENp,(p,q)EN lI@EPqlkl 

C q E N , , ( p , q ) E M N  IlsL * @ E p q I b i  I ?'P vp E 
FijkX.  

x ( p , q ) E N  < @Epqr Epq > 
+ C ( p , q ) E ~  < SL * SL * F!;:. >= bijkkxo E 

where SL denotes the left shift operator. After 
finding the optimal solution for this problem, one 
can shift it back to obtain the optimal @i. 
Consider now the case where either g~~~ is 
proper but not strictly proper for some ( p , q )  E 
M, or the product U E ~ ~ V E , , ~  is proper (not 
strictly proper) for some m, n, (p, q )  E B. De- 
note the set of indices ( p , q )  of E % which 
has being proper or U E ~ ~ V E ~ ~  being proper 
for some m,n such that 1 5 m 5 n,, and 1 I n 5 
%, by P c %. Define 

- A A  

n A A  

- 
H E  C o I c g E p q )  (Pi n) E p 

For i = 1, ..., n,,, define 
- 
- ?E; A @ E i l  G E 2  - 
QE 

GEin,] 

[ Q E I ~  ' * * 9 Q E ~ , I '  

Also for a = 1, . - , nu, define - 
W E i  h 

W E  C d { ~ E 1 U T / E 2  * .  * m E n , ] }  

[ c E p z E l q G p i V E 2 q  h * * .  GEpiVEn,q ]  

for ( p , q )  E P .  Note that GE E card(P) x 1, 
Q E  E (nu-ny) x 1, and U T / E  E card(P) x (nu.ny), 
where card(P) is the number of elements in P. 
Clearly, for the X 2 / &  problem to have a finite 
solution, we must have 

- - 

h h n 

(9) m ~ ( m ) Q E ( m )  =  HE(^) 
e ~ E ( o ) Q E ( o )  = Z E ( 0 )  

The solution QE(0) to this problem is not nec- 
essarily unique since the number of row of m~ 
is less than or equal to the number of column of 
UVE.  Define 
- 

n,, %I - 
A 

A - 
HEpq HEpq - c E p m Q E m n ( 0 ) V E n q  

m=l n=l 

- 
V ( p , q )  E P where GEmn(0) is a matrix whose 
elements are constructed back from QE(0) in (9). 
Furthermore, define 

A A 

C E p q  = %, v(P, 4) E p 
QEC2) = 2(Q^E(2)  - Z E ( O ) )  

A 

Then our problem can be written as, 

PE = i n f + a ~ I ' ~  Il@Epqll?a 

smt* c q E N p  II@Epqllf1 5 ?'P vP E s 
and @% >= 2 j k L  

(10) 
E 

where FzkXo andpzkXa are the zero interpolation 
condition for EE,  FE and VE, where 
- 
U E  

L C E p m  9 s.t. ( p ,  q )  E P and vm, U E ~ ~  elsewhere} 
H E  A { H E , ,  V ( p ,  q )  E P, HEpq elsewhere} 

n - A - 
Since E E ~ ~  and either U E ~ ~  or V E , , ~  are both 
strictly proper for all m, n, and (P, n) E P ,  gpq 
is strictly proper for all ( p ,  q )  E 2. Thus (10) is 
equivalent to: 

PE =*iF:7{ *@pqIIi2} (11) 
( P d E E  

subject to 
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The optimal @ & ( I C )  can be recovered by shifting 
back the solution obtained from the problem (11). 

5 An Example 

Consider the following realization: 

7- ll@llLi I I + I I ~ a  . 
r = 0.05 4.9883 2.8745 

Suppose that we want to minimize the 'Ha norm of 
T,, subject to the constraint IlT,, 1 1 ~ ~  5 5. With 
r = 0.1, and using the method in [7], the prob- 
lem was reduced to a finite dimensional convex 
optimization problem. The solution was obtained 
with the optimal 011 of 40 th order (@ai = 0). 
The optimal cost and C1 norm for different values 
of r are given in Table 1. It can be seen that the 
smaller value of r gives better cost. Finally, after 
the model reduction, the order of the controller 
was reduced to  8 with less than 1 percent perfor- 
mance loss. The reduced order controller is given 
by: . 

Unconstrained C1 3.6 
Unconstrained Ea 5.7389 

-4.8535 s+9.0845 s+0.1793 s+0.0124 
s+9.0845( aa+4.8~~a+30.0~~)(sa+1.7~~6s+4.569~ a+3.176! a+0.179!) a+0.012)4 

s~+6.1900s+33.8877)(aa+l.6601a+4.2475 
0 

00 

2.8280 

Table 1: Cost for different r 

3, I 

Figure 2: Impulse responses for r = 0.1 

6 Conclusions and Further Research 
In this paper we consider the continuous-time 
counterpart of the mixed 'Ha/tl problem intro- 

duced in [7]. We first show that the continuous- 
time mixed 'HZ/Ci problem leads to solutions 
having non-rational transfer functions, even 
when the original plant is rational. 

Given the difficulties entailed in physically imple- 
menting a non-rational controller, in the second 
part of the paper we explore the restriction of 
the problem to rational functions. We show that 
the optimal cost can be approximated arbitrar- 
ily close by rational controllers that can be be 
synthesized by solving an auxiliary discrete-time 
non-standard ?&It1 problem. 

The systems considered in this paper are one- 
block. However, the technique can be extend to 
two and four-blocks via delay augmentation (a 
similar technique is proposed in [7] to handle 2 
and 4 blocks discrete-time 'H2/tl problems). 
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