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Abstract

In this paper we consider the problem of opti-
mizing the H2 norm, while keeping the £, norms
of some other transfer functions under specified
levels. We show that the optimal closed-loop
impulse responses of transfer functions in the
constraints have finite support, and thus non-
rational Laplace transforms. To solve the diffi-
culty of implementing non-rational controllers,
we propose a method for synthesizing rational
controllers with performance arbitrarily close to
optimal.

1 Introduction

Many control problems involve the optimization
of certain performance measures, in addition to
the stabilization of the system. Often mini-
mization of a single performance index is not
enough to capture several, perhaps conflicting de-
sign specifications, leading to a research effort
aimed towards designing multi-objective feedback
controllers, capable of satisfying multiple perfor-
mance specifications (see for instance [4, 8] and
references therein). In this paper we consider the
problem of optimizing the 3 norm, subject to
L, constraints, leading to a mixed H3/L1 prob-
lem 1. The discrete time version of the problem
was studied in [9] in the SISO case, and {7] for
MIMO systems (see also [6, 1], for the SISO £, /H,
and £;/H; problems). In this paper we explore
the continuous—time counterpart of the problem.
The main results of the paper show that the opti-
mal solution has non-rational Laplace transform
even if the original plant is rational, and propose a
Euler Approximating System based rational con-
troller synthesis method.

*This work was supported in part by NSF under grant
ECS-9625920.

1 This problem can also be motivated as an optimal H3
problem subject to robustness constraints.
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2 Notation and System Preliminaries
The notations are standard. M, (Hp*"), L
(£y*™), and &, (£*") are the standard no-
tations for the commonly used Hardy and Ba-
nach spaces. AM denotes the space of all purely
atomic measures on Ry, i.e., AM = {h,h(t) =
S had(t — t), (s} € &1} with []lane =
S ieo |ht]. A denotes the space whose elements
have the form h = hX(t)+3 5o o hL6(t—1t) where
RE(t) € L1(Ry), {hL} € £1,and t; > 0 (ie., A=
AM x Lx(Ry)), with IhlLa = [IBE]lz, + [Ri]le-
#(2) (2(s)) denotes the Z transform of a right
sided real sequence z = {z(k)}$2, (the Laplace
transform of a function z(t) on R.).

It is well known that the set of all achievable
internally bounded—input bounded-output stable
closed-loop maps is given by

0 = {® € L}*™(R,) : There exists
QeLT ™ (Ry)st. 2=H-UxQxV}

where H € L7**™(Ry), U € L}**™(R;),
and V € L]**"“(R4) are fixed maps that de-
pend on the plant P, and Q € L7**"*(Ry) is a
free parameter. In the sequel we > assume, with-
out loss of generality [3], that T and V have
full column and row ranks respectlvely Let
the Smith-McMillan decomposmon of U and ¥
given by 7= LUMURU and V = LVMVRV,
where Ly € L7**™(Ry), Ry € L}*™(Ry),
Ly € CT"X""(R.,_), and Ry € L7“*™=(R,) are
unimodular matrices. My € £,"=*"“(R4) and
My € L3Y*™(R,) can be written as

My = (dia'g{i\t, Tty ;fi“—“} Onux(n‘—nu))T

— o
My = (dzag{%—‘;, o 1P’ } Onyx(nw—uy))
where {&, 17;,} and {, 9!} are coprime monic
polynomial pairs. Let Syv denote the set of zeros
of U and V in the closed rxght half plane. We as-
sume that neither & nor V have zeros on the jw
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axis. For s, € Syv define, oy,(s,) = multiplicity
of s, as a roots of &, oy,(s,) = multiplicity of s,
as a roots of €;. Also define the polynomial row
and column vectors &; and EJ as & = (Ly')i,
B; = (Ry'), where (M); and (M) denote the
1th row and jth column of the matrix M respec-
tively. Further denote by «;, and G;, the pth
column of a; and gth row of B; respectively, and
define Fifkse ¢ LT=Xmw(R ) by,

Fijken() =

0\8

f aip(s — 1)Bjo(1 — t)(e™*t)*)dsdl
0

for 1 <p<ng;,l<gs ny, k= 01-~-;0'U.'(30) +
ov,(80) = 1,4=1,..,ny, and j = 1,...,n,, where
(.)(") denotes the kth derivative with respect to s.
Finally, define Gq,qt € £7*™(R;) for ny, +1 <
i<n;,1<g<mny,andt € Ry, and Gg,pt €
LyXw(Ry)forny +1 < j <Ny, 1 <p<ny
and t € R; by,

Ga;qt(l) : (On,x(q-—1) aé(t - l) On,x(nu—q)) T
Gp,pt(1) = (Onyx(p-1) Bi(t = 1) Onyx(n.-p))

Theorem 1 [3] Define RF**se := Real(F#¥*-)
and IF¥%*e = Imaginary(F*%) and assume
that Syy C int(RHP). & € Lr™(R,) is
achievable if and only if the following conditions
hold:

< &, RFii*e >=< H,RF*% > 1)
< &, IFikse S=< H,[Fiikse >

forso € Syv,i=1,.,nyj=1,.,ny, and k =
0,...,00,(80) + ov;(80) — 1, and

< Q, Ga‘qt >:< H, Ga.-qt > (2)
< &, Gp,-pt >=< H, Gpjp: >

fori=my+1,..,n,, J = ny+1,..,n, ¢ =
1,.,ny,p=1,...,n,, andt € R+.

3 The Mixed H;/L; Control Problem

3.1 Problem Formulation
Define the following set of indices:

Ny, ={1,...,n}, N, ={1,...,n,}

S: the subset of N, corresponding to rows
of ® subject to an £; constraint.

M: set of indices (3, j) of transfer functions
appearing in the H2 objective.

N: set of indices (%, j) of transfer functions
appearing in the £; norm constraint.

MN = M N N: functions appearing both
in the objective and the constraints.

M = M\MN: set of indices (3, j) such that

the ®;; appears only in the objective func-
tion.

N = N\MN: set of indices (4, j) such that
®;; appears only in the constraint.

Then the problem can be precisely stated as:

Problem 1 Given the FDLTI plant P shown in
Figure 1, find:

b= @ié‘?,{ Z—”q’m”%,}
(r,g)eM

and the corresponding controller K, where

Iy={2e€@:}, yeur [1®pqll3, < o0,
quN, [|®pella <7, VP € S}

where, for each p € S, N, denotes the elements
of the p** row subject to a constraint.
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Figure 1: The generalized plant

We will assume that n; = n, and that n; = n,,
i.e., “one-block” category, where only the “zero
interpolation” constraints (the first set of condi-
tions in Theorem 1) are present [3]. However, the
assumption can be relaxed to two and four-blocks
via delay augmentation. We will further assume
that for all (p, g) € N; x Ny, the transfer function
®,, appears at least in the £; constraint or in the
objective function 2.

3.2 Primal and Dual Problems
Problem 2 (The Primal Problem)
b= inf§€F,.{Z(F,q)e’ﬁ ”qu_l'lgt,} B
st <@, Fiikso >=< H, Friikeo >= piikso

for s, € Syv, i = 1,1, j = Ly my, and
k=0,..,00.s0) +ov;(s0) — 1.

2This can always be assumed without loss of generality
by adding, if necessary, artificial constraints with arbitrar-
ily high v
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Let ¢, = Zsaesuv 2:;“1 ;‘__’_1 ou;(s0) + ov;(s0)
and ¢, denote the total number of zero interpo-
lation and £; constraints respectively. Define

A= {@neXnw : 3,0 € Ha Y(p,q) € M,

@, € AVY(p,q) € N, &y, € H2N Ly Y(p,q) € MN}

Then, Lagrange’s duality theorem [5] yields the
following dual problem:

Problem 3 (The Dual Problem)

en BB pe. o(4,v)

o(F,y) = inf&eA{Z(p,q)eﬁ ”‘I_’_pq”%(,
+ Figi ks, Wgkao (B9800 — < Fiikee, & >)
+ Zpes Up (quN, ”q’PQHA - 7}1)}

where §p (an element of § € R~ ) and y;j1,, (an
element of y € R°* ) are the Lagrange multipliers
corresponding to Ly and zero interpolation con-
straints respectively.

Theorem 2 If the solution $°(t) ezists, then

= mu{z(r,a)ég f:) 2“}:96)‘#
+ 2(p,q)eMN fo .—.-qu(t)dt
+ Yijke. Yijkeo b0 — Yres T}

m

st § € R, § > 0,y € R*, 8, € L1(Ry)N
Ha(Ry) V(P» Q) EM,® €A V(p, 9) €N, and

[Zpg(t)] <% if(mq)EN
®,0(t) =0 if(p,q) € N, |Zpe(t)| < B

28,0(t) = Zpg(t) — Tp if (P1q) € MN, Zpy(t) > %
= Zpg(t) + p if (P,q) € MN, Zpy(t) < —Bp

=0 if (p,q) € MN,|Zpo ()| < Bp
= Zp(t) if (pa) €M

Vit e Ry, where qu(t) = Ei,j,k,s,yijkﬂoF;jh"(t)'
Furthermore, the optimal @], 15 unique VZp, q) €
(MN)UM.

3.3 Structure of the Optimal Solution

Lemma 1 Assume that the £y constrainis are
feasible. Then, for each p such that the cor-
responding L1 constraint is aclive, there ezists
T € Ry such that ®),(t) =0,V q,t > T.

Corollary 1 Ezcept in the irivial case where
all the £1 constraints are inactive, the optimal
Ha /Ly closed loop transfer matriz and the opti-
mal controller contain at least one element with
e non-rational Laplace transform.

4 Rational H;/L; Controller Synthesis
From an engineering standpoint, given the diffi-
culty of implementing non-rational transfer func-
tions, this motivates the following problem:

Problem 4 (Rational H;/L,)

pR= imf {3 |1212,)

$ERT, -
(p.g)eM

where RT., denotes the subspace of Ty formed by
functions having real rational Lgpla,ce transforms,
and, given € > 0, o controller K(s) such that the
corresponding closed-loop transfer function ®p €
RT, and satisfies 35, 57 1®RIIZ, < P +e

Lemma 2 For a given € > 0, there ezist $p €
RT., such that ‘E(p,q)eﬁ l|®rlZ, - y‘ <e.

Corollary 2 u = puR.

Given the continuous-time system:

&) = (-55) 3)

its EAS is defined as: [2, 1]:

Gal(z) = ( I+CTA rlz)a ) (@)

Theorem 3 Consider a sirictly decreasing se-
quence T; — 0. Define

i = inf % Z(p,q)eﬁ Hq)qu(k) Ts)”%t: (5)
a't'ZqGN, “Qqu(ky Ti)”lx S 7P7Vp € S

Assume that vp! < 7,,Yp € S. Then, the se-
quence j; is non increasing and u; — ut.

Remark 1 From Theorem 3 it follows that the
EAS based method can be used to solve problem
4, provided that the corresponding discrete-time
problem can be solved.

In the sequel, we show that these problems can
be solved by using the algorithm proposed in
[7], provided that it is appropriately modified so
that the resulting closed—loop system is strictly
proper. This guarantees that the corresponding
continuous-time system has a finite H, norm.

Consider the H3/£; problem for the EAS system.
All internally stable closed-loop maps are given
by &g = H—Ug * Qg * Vg, where Hg € £3=%"v,
Ug € £7**™, and Vg € £7¥™™ are the EAS of
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H, U, and V respectively, and Qg € £7*""*(R})
is a free parameter. The H3/¢; problem for the
EAS system is given by,

ue = infager, {3, I ||<I’Ep4”t;} (6)
subject to < @E,Fuk ° >= 5"

Ao € Aygv,i = 1,---,nu,j = 1)~-'1ny)k =
0,...,00,(Xo) + ov;(X;) — 1. In order to have fi-
nite % norm, & Epq must be strictly proper for all

QE)Q) €M, or &;qu(co) = ®ppe(0) = 0 V(p,q) €
M. This results in the following problem,

HE = qu"'er"{z(i’ q)eM ”(I’E'pq”z,}
subject to < @E,F*Jﬂa S= b"""" (7)
and ®z,,(0) = 0 V(p,9) € ¥

Note each element of & is given by:

ny Ny
(Pqu = Hqu - § : Z UEmeEmﬂVEnq
m=1n=1

In the case where H Epq and at least either U Epm
or VEM are strictly proper for all pairs (m, n) and
(p,q) € M, the additional condition is automati-
cally satisfied, and (7) is equivalent to,

ue = jof Z_HSL *®pplly,  (8)
(pg)eM

subject to

quNﬁ(Plﬂ)EN Il@EPq”C;
+quN,.(p,q)eMN [ISL * ®Epqlle, <7p VPE S

kh
E(p g)EN < @EPQ’ ngq - .
+ L)l < St * Epg, St * Filpg® >= b

where S7, denotes the left shift operator. After

finding the optimal solution for this problem, one

can shift it back to obtain the optimal $%.

Consider now the case where either H Epq 18
proper but not strictly proper for some (p,q) €
M, or the product ﬁEpmi}Enq is proper (not
strictly proper) for some m,n, (p,q) € M. De-
note the set of indices (p,q) of <I>Em € M which

has H Epq being proper or UEpm VE,,q being proper
for some m,n such that 1l <m<n,and1<n<
Ny, by P C M. Define

Hg = col{ﬁ'E"} (p,g)e P

For i = 1,...,ny, define

Qri = L@En @EQ <+ QEin,)
Qe =[@r1, ", QEn)

Also fori = 1,---, n,, define

ﬁj}}i = [ﬁEpifiElq EEinEZq e UgpiVn,q)
UVg =col{[lUVE:UVE2 -~ UVEn,|}

for (p,q) € P. Note that T}E € card(P) x 1,
Qg € (nu'ny)x1,and UV g € card(P)x (n-ny),
where card(P) is the number of elements in P.

Clearly, for the H2/L; problem to have a finite
solution, we must have

TV 5(00)Q(00) = H(co) )
& UVg(0)Qg(0) = Hg(0)

The solution Qg (0) to this problem is not nec-
essarily unique since the number of row of UV g
is less than or equal to the number of column of

UVg. Define
~ N Ny _
HEM = HE'pq - Z Z UEmeEmn(O)VEnq
m=1n=1

V (p,q) € P where aEmn(O) is a matrix whose
elements are constructed back from Qg(0) in (9).
Furthermore, define

Uqu U_m: V(p, q) €P
Q5(2) = 2(@s(2) - Qx(0))
Then our problem can be written as,
ME = inf@aer‘, [|1®2pall7,

s.t. 3en, [12Epqlle, %_’{'p Vpe S (10)
and < &g, Fy**e >=p3*

where Fij**> and 5**< are the zero interpolation
condition for Hg, Ug and Vg, where

ﬁEi

{ﬁgpm Vps.t. (p,q) € P and Vm, Ugpm, elsewhere}
Hg = {Hgp, ¥(p,q) € P, Hgp, elsewhere}

Since H Epq and either ﬁE,m or Vgnq are both
strictly proper for all m,n, and (p,q) € P, EI;M
is strictly proper for all (p,q) € M. Thus (10) is
equivalent to:

pE = mf{ Z [1SL * ®p4l17,} (11)
(pﬂ)EM

subject to

ZqGN,,(p,q)eN “‘I’Em”h
gEN,,(p,9)EMN I1SL * @pglle, <1, VPE S
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SiikAo
z:(z:,q)f-:N < ®Epgs EJpq >

+ Z(}:,q)eﬁ < SL * @qu, SL * ﬁg':;’)‘o >= ng)‘c
The optimal ®% (k) can be recovered by shifting

back the solution obtained from the problem (11).
5 An Example

Consider the following realization:

21 Uy 0 1 0 w
22 = u2 = 0 0 1 U
y Y 1 ﬁ 1 Uy

Suppose that we want to minimize the 23 norm of
T, subject to the constraint ||T;w||c, < 5. With
7 = 0.1, and using the method in [7], the prob-
lem was reduced to a finite dimensional convex
optimization problem. The solution was obtained
with the optimal ®;; of 40 th order ($3; = 0).
The optimal cost and £; norm for different values
of T are given in Table 1. It can be seen that the
smaller value of T gives better cost. Finally, after
the model reduction, the order of the controller
was reduced tc 8 with less than 1 percent perfor-
mance loss. The reduced order controller is given
by: -

—4.8535(s+9.0845)(5+0.1792)(s+40.0124)
(5+9.0845)(s+3.1762)(2+0.1792){s+0.0124)

I?( 8) = (2?+4.89605+30.0843)(57+1.72065+4.5698)
(27+6.1900s 4 33.8877)(s7+1.66015+4.2475)
0
Table 1: Cost for different 7

7 =0.05 4.9883 | 2.8745

7=0.10 4.9298 | 2.8886

7=0.15 4.8589 | 2.9107

7 =0.20 4.7965 | 2.9348

Unconstrained £, 3.6 o0
Unconstrained Hz || 5.7389 | 2.8280

Figure 2: Impulse responses for 7 = 0.1

6 Conclusions and Further Research

In this paper we consider the continuous-time
counterpart of the mixed H3/¢; problem intro-

duced in [7]. We first show that the continuous—
time mixed H3/L; problem leads to solutions
having non-rational transfer functions, even
when the original plant is rational.

Given the difficulties entailed in physically imple-
menting a non-rational controller, in the second
part of the paper we explore the restriction of
the problem to rational functions. We show that
the optimal cost can be approximated arbitrar-
ily close by rational controllers that can be be
synthesized by solving an auxiliary discrete-time
non—standard H,/¢; problem.

The systems considered in this paper are one—
block. However, the technique can be extend to
two and four-blocks via delay augmentation (a
similar technique is proposed in [7] to handle 2
and 4 blocks discrete-time H,/¢; problems).
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