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Abstract 

In this paper we consider the problem of minimiz- 
ing the C1 norm of a closed-loop transfer function 
while keeping its Hz norm under a specified level. It 
wiU be shown that the optimal closed-loop impulse 
response has finite support, and thus a non-rational 
Laplace transform. To solve this difficulty we pro- 
pose & method for synthesizing rational controllers 
with performance arbitrarily close to optimal. 

1 Introduction 

Many control problems involve the minimisa- 
tion of certain performance measures, in addi- 
tion to the stabilization of the system. Often 
optimization of a single performance index is not 
enough to capture several, perhaps conflicting de- 
sign specifications, making the imposition of ad- 
ditional constraints necessary. This leads to the 
design of feedback controllers satisfying mixed 
performance specifications. Many types of mixed 
objective control problem have been studied re- 
cently, depending on how the exogenous inputs 
and regulated outputs are modeled and on how 
the additional constraints are imposed (see for in- 
stance [8, 121 and references therein). It is well 
known that the case where the exogenous inputs 
and outputs are measured in terms of peak time- 
domain values leads to an L1 optimization prob- 
lem. If, in addition, one wishes to guarantee a cer- 
tain level of nominal 7t2 performance, the prob- 
lem becomes a mixed L l / X 2  problem. The dis- 
crete time version of the problem was formulated 
and solved in [lO],[ll] (see also [15] for the re- 
lated X z / I 1  problem). In this paper we explore 
its continuous-time counterpart. The main re- 
sults of the paper show that the optimal solution 
has a non-rational Laplace transform, even if the 

IThis work was supported in part by NSF under grant 
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plant and all weights are rational and proposes 
a technique to obtain +suboptimal rational a p  
proximations. 

2 Preliminaries 

2.1 Notation 
11 denotes the Banach space of right-sided, ab- 
solutely summable real sequence z = ( ~ ( k ) } r ! ~  

equipped with the norm llzllll A Iz(k)l < 00. 
I2 denote the Hilbert space of energy bounded 
real sequences z = (z(k)),”==, equipped with the 

norm llzllla ( E  1z(k)12)i < 00. R+ denotes 

the set of nonnegative real numbers. C1(R+) de- 
notes the Banach space of Lebesgue integrable 
functions z ( t )  on R+ equipped with the norm 
l 1 ~ I I . c ~  A som Iz(t)ldt < M. &(a+) denotes the 
normed space of Lebesgue integrable functions 
z ( t )  on R+ equipped with the norm l l z l l~~  f 
(s,” lz(t)lzdt)f < 00. X 2  denotes the isometri- 
cally isomorphic space of L2(R+) (or 1 2 )  under 
the Laplace transform X ( s )  (or the 2 transform 
X ( z ) )  with norm given by llX(lxl = Ilzllc, (or 
IIXIIxa = llzllra). In the sequel we will use lower 
case letters to denote time-domain functions and 
upper-case letter to denote their Laplace (or 2) 
transform, unless it is specifically indicated other- 
wise. Finally, the prefix R will be used to denote 
subspaces formed by functions having real ratio- 
nal Laplace (or Z) transforms. 

2.2 Lagrange duality 

00 

k=O 

m 

k=O 

Theorem 1 (Lagrange duality, [9] ,  [15],[10]) 
Let X be a Banach space, Q be a conuec subset 
of X I  Y be a finite dimensional space, Z be a 
normed space with positive cone P .  Let f(x) be 
a real valued conuex functional, G(x) be a convez 
mapping of X into 2, and H ( z )  an afine ZineaT 
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map of X into Y such that 0 E i n t [ r a n g e ( H ) ] .  
Define 

(1) 

Suppose that there exists x E R such that G(x) < 
0 and H ( x )  =O and suppose p i s  finite. Then, 
P =  
inf [f(x)+ < G(z),yl > + < H(x),y2 >] and the 
+ E n  
m a z i m u m  is achieved f o r  some y; 2 0 ,  y; E Z* 
and y; E Y .  Furthermore, i f  the infimum in (1) 
is achieved by some 5" E 52, then < G(zo),yf > 
+ < H(xo),y,O >= 0 and xo E 52 minimizes 
f(s)+ < G(z),yf > + < H(a),y: >, z E n. 

/A = inf{f(z) : G(z) 5 0, H ( z )  = 0, z E a) 

max cP(YlrY2)r where P(Yl,Y2) = 
yl>O,ylEZ*,yaEY 

3 The mixed &/%a control problem 
In this section we formulate the mixed &/%2 
control problem, and show that the optimal 
closed loop has an irrational Laplace transform. 

3.1 Problem setting 
Problem 1 Given the continuous-time FDLTI 
plant P shown in Figure 1 find: 

subject t o  11r#11;, 5 r2 where S = &(R+) n 
&(R+), and the corresponding controller K ( s ) .  

Figure 1: The generalized plant 

In the sequel we will solve this problem by ex- 
ploiting the Lagrange Duality Theorem1. 

3.2 The Primal and dual problems 
It is well known that the set of all achievable in- 
ternally stable closed-loop maps is given by 

where tl(t),ta(t) E C1(R+) are fixed SISO maps 
and q ( t )  E C1(R+) is a free parameter. To 
simplify our problem, in the sequel we assume 
that the map T2(s) has no zeros on the jw 
axis and all of its non-minimum phase zeros 
51, - , sn are simple and real. Under these as- 
sumptions a given 4(t) is a feasible closed-loop 

lFor simplicity we consider SISO systems. However, 
the results here can be generalized to the MIMO case using 
the techniques in [ll]. 

map if and only if the interpolation conditions 
@(si) = Tl(si), i = 1, . , n are satisfied. Equiv- 
alently, &=" A ( t ) d ( t ) d t  = b where 

Thus the primal problem can be stated as: 

Problem 2 (Primal) Find 

Setting X = Q = S, Y = Rn, and Z = R leads to 
the following dual problem: 

Problem 3 (Dual) Find 

Lemma 1 Problem 3 is equivalent to: 

subject to  

where z ( t )  = -A*yz 

Remark 1 Note that y1 i s  always strictly greater 
than 0. This is due t o  the fact that the un- 
constrained optimal L1 solution (corresponding 
t o  y1 = 0 )  i s  not in %a (ezcept in the trivial 
case). Thus the %2 constraint i s  always active 
for  r2 E [72, CO), where 

72 = inf llv112, subject to 
V € S  

leading to  optimal solutions essentially diflerent 
f r o m  those in [6]. 
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3.3 Structure of the optimal solution 
Here we show that the optimal closed-loop im- 
pulse response &'(t) has finite support, and thus 
a non-rational Laplace transform +"(s). 

Corollary 1 If the solution to  the primal prob- 
l em  @(t) ezists, then  @(t) = v" ( t ) .  

Corollary 2 If the 'Hz constraint i s  feasible (i.e., 
y 2  E [ ~ z ,  oo)), then  there ezists T E R+ such that 
v " ( t )  = 0 ,  V t  2 T .  

Corollary 3 P(s)  i s  irrational. 

4 Rational controller synthesis 
So far we have shown that the solution to the pri- 
mal problem (if it exists) is non-rational. From 
an engineering standpoint, given the difficulty 
of implementing non-rational transfer functions, 
this motivates the following problem: 

Problem 4 (Rational L1/3 t2)  Find: 

p R  = inf I I4  I 4  K( a): a t a b i l i r i n g , ~ t ) E ? C S  

subject t o  \lq511:2 5 r2 where RS = RLl(R+) n 
R&(R+), and, given E > 0 ,  a controller K ( s )  
such that the corresponding closed-loop 4~ satis- 
f ies ll4Rll&, 5 7' and II#RII.Cl 5 P R  + E *  

In this section we derive a solution to Problem 4, 
based upon solving a modified auxiliary discrete- 
time 11/7& problem obtained using the Euler Ap- 
proximating System (EAS). Recall that given the 
continuous-time system: 

G(8) = (+) (5) 

its EAS is defined as the following discrete-time 
system [Z]: 

G E ( ~ )  = (--- (6) 

It is easily seen that we can obtain the EAS of 
G(s) by the simple transformation s = e, i.e., 
G E ( z )  = G ( 5 ) .  

Theorem 2 Consider the stable strictly proper 

system G ( s )  = (,+) and i ts  corresponding 

B A S  G E ( ~ ,  T )  =- (w) where r > 0.  

Le t  r,,.,,= = $~2*. where A is the set of 

eigenvalues of A and consider a strictly decreas- 
ing sequence r,,, > r; 1 0.  Then  the following 
properties hold: 

Next we state the main result of this section show- 
ing that Problem 4 can be solved by solving a 
sequence of discrete-time mixed 11/'Hz problems. 

Theorem 3 Consider a strictly decreasing se- 
quence ri -+ 0. Define 

Assume that 7 2  < r2. Then, the sequence pi i s  
non increasing and such that pi + p R .  

We show now that these problems can be solved 
by using the algorithm proposed in [lo], provided 
that it is appropriately modified so that the re- 
sulting closed-loop system is strictly proper. 

Consider the 1 1 / 3 t 2  problem for the EAS system. 
All internally stable closed-loop maps are given 
by 

4E(k) = t l E ( k )  - tZE(k)  * W ( k )  (8) 

where t l E ( k )  E 11 and t 2 ~ ( k )  E 11 are the EAS 
of tl(t) and ta(t) respectively, and q E ( k )  E 11 is 
a free SISO parameter. Let s; denote the zeros 
of T 2 ( S )  in the open right half plane and define 
zi = 1 + rsi ,  i = 1, ..., n. Note that zj are pre- 
cisely the non-minimum phase zeros of TzE(z).  
Then 4(k) is a feasible closed map if and only if 
the interpolation condition + E ( z ; )  = T ~ E ( z ; )  for 
i = 1, ..., n is satisfied. Specifically, A E ~ E  = bE 
where: 

The ll/'h!z problem for the EAS system is given 
by, 

subject to 

P E  = QEll  kf IltlE - t2E * 9Ellll 

lltiB - t2E * !?Ell?2 5 ? ' E ~ , A E ~ ~ E  = bs (10) 

In order for Theorem 2 to be valid, we must add 
an additional constraint to the optimization prob- 
lem (10). Namely, @ E ( z )  = TIE(Z)  - T ~ E Q E ( z )  
must be strictly proper, or @ ~ ( o o )  = t j ~ ( 0 )  = 0. 
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This results in the following nonstandard Z1I7-l' 
optimization problem, 

P E  = inf lltm - t z ~  * i ~ l l i ~  
qEll 

subject to 

[ I t E l  - - E 2  * i E l l %  < 7 E 2 , A E d E  = b E , d E ( O )  = 0 
(11) 

In the case when T~E(z) and TZE(Z)  are both 
strictly proper, the additional condition is auto- 
matically satisfied, and (11) is equivalent to, 

P E  = inf IISL *   ti^ - t 2 E  * QE)IIi1 
9611 

subject to 

where SL denotes the left shift operator. After 
finding the optimal solution for this problem, one 
can shift it back to the right to obtain the optimal 
solution q5$ (k) . 
Consider now the case where T ~ E ( z )  and TZE(Z)  
are proper, but not strictly proper. Clearly, for 
the L1/3cz problem to have a finite solution, we 
must have 

TlE(m) 
Q E ( ~ )  = - 

T Z E ( m )  
or 

assuming that t z E ( 0 )  # 0. Define: 

PIE = TIE - TZE(Z)QE(O) 
(13) PZE = T 2 B ( Z )  

G E ( Z )  = Z ( 6 E ( z )  - Q E ( 0 ) )  

Then our problem can be written as, 

ccn = inf I~ZLE - Z Z E  * @Ellr, 
4 E h  

subject to 

Ilt;E - $2, * iEll?2 5 ~ E ' , A E ~ E  = bE (14) 

Note that ! ~ ' I E ( z )  and ? ~ E ( . Z )  are both strictly 
proper and ~ ' I E ( Z ~ >  = T ~ E ( z ~ )  for all unstable ze- 
ros of T ~ E ( z ) .  Thus (14) is equivalent to: 

P E  = inf * (GE - l 2 E  * @ E ) I I I ~  
QEll 

subject to 

llsL * (;LE - i 2 E  * 5 ? E 2 ,  AE(SL * d E )  = 6 E  

(15) 
Again, the optimal solution 4k(k )  can be re- 

covered by shifting back the optimal solution ob- 
tained from the problem (15). 

5 An example 

Consider the plant P ( s )  = A. The goal is to 
design a rational controller K ( s )  to minimize the 
C1 norm of the control action 

subject to the constraint 

One Youla parameterization is given by 

For this example the optimal unconstrained Cz 
cost is 11q5°i211$2 = 2.828'. The optimal uncon- 
strained C1 cost (found using the method in [6]) 
is l14°~111~l = 3.6. Assume that the desired ' H 2  

level is 7' = 10. Choosing T = O.lz yields 

Since in this case T~E(z) and T ~ E ( z )  are both 
proper, the modified interpolation constraint 
must be used. The transformed closed loop map 
is given by 

The interpolation conditions are given by A E ~  = 
bE where: 

2stability requires r < 1 
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Note that g f l ~ ( z i )  = -&T1~(zi) for all unstable 
zeros of ?2i;aE(z). Let: 

3 Method Il6llr1 I 11611% : 
1 EAS(T = 0.1, 5th order) 5.0232 I 2.8818 

- 0.5~(~-1.1)(~-0.9)(Z-0.86) 
(Z-0.9)3[Z-0.8) 

- 
-0.5(z-l . i)2 . - (z-0.9)2 I Z E ( 4  

(20) 
After shifting 4 ~ ,  the interpolation condition can 
be rewritten as: 

with corresponding p = 3.333 and 7 = 8.1398. 
Table 1 compares the performance achieved by 
the EAS-based controller (after model reduc- 
tion), the LMI-based controller and the uncon- 
strained optimal L 1  and 3 t z  controllers. The cor- 
responding impulse responses are shown in Figure 
2. 

Table 1: Cost for different approaches 

. I  

In this example and 63  are given by 

Using the method proposed in [lo], the problem 
was reduced to a finite dimensional convex op- 
timization problem. The optimal solution &$(z) 
has order 39 (hence @$(z) has order 40). The cor- 
responding closed-loop transfer function, given by 
@(s) = @ $ ( Z ) I ~ = I + O . I ~ ,  has 11411~, = 2.8705 and 
Ilc$llr, = 5.0339. 
Given the high order of the resulting closed-loop 
system, the synthesis was followed by a model re- 
duction step, yielding the following 5th controller 

4.8a4 + 65.35' + 448.5a2 f 1055.38 + 14'74.4 
86 + 18.3s' + 156.083 + 588.282 + 1086.28 + 1016.6 

virtually achieving the same performance. 

Before close this section we want to briefly ad- 
dress the issue of controller complexity. As illus- 
trated by this example, rational approximations 
to the optimal C 1 / 3 c ~  controller may have order 
many times larger than that of the plant (this 
is not surprising since we are trying to approxi- 
mate an infinite-dimensional system). While con- 
troller reduction methods usually succeed in pro- 
ducing low order controllers, optimality may be 
lost in the process. As an alternative to the two- 
tiered method of designing an optimal controller 
followed by model reduction, suboptimal fixed- 
order controllers can be synthesized by extending 
the LMI-based method proposed in [13] to the 
output feedback case using similar techniques to 
those in [4] 

the following first order controller 
For this example the LMI-based approach yields 

4.6225 
s+ 3.3 K L M Z ( S )  = - 

LMI ( lbi order) 5.3086 2.8561 
Unconstrained C1 ' 11 3.6000 1 00 /I 
Unconstrained X2 5.7389 2.8280 

Figure 2: Impulse responses for the two methods 

6 Conclusions and directions for further 
research 

In this paper we consider the continuous-time 
counterpart of the mixed Z1/3t2 problem intro- 
duced in [lo]. The first part of the paper shows 
that, contrary to the situation in the discrete- 
time case where the solution to the problem is 
well behaved, the continuous-time mixed & / 3 c ~  
problem leads to a non-rational transfer function, 
even when the original plant is rational. 

Given the difficulties entailed in physically imple- 
menting a non-rational controller, in the second 
part of the paper we explore the restriction of 
the problem to rational functions. The main re- 
sult of this section shows that suboptimal ratio- 
nal controllers can be synthesized by solving an 
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auxiliary discrete-time problem, obtained by con- 
sidering the Euler Approximating System (EAS) 
of the plant, together with an additional inter- 
polation constraint, leading to a non-standard 
11/7-13 problem. While these rational controllers 
can achieve near-optimal performance (as T --+ 0) 
they may have high order (many times the order 
of the plant)3. Thus practical considerations of- 
ten mandate that the synthesis step be followed 
by model reduction. Alternatively, fixed order 
suboptimal controllers can be obtained using an 
LMI-based approach similar to the one that we 
proposed in [13]. While at this point there are 
no a-priori bounds on the gap between the per- 
formance of these controllers and the optimal, an 
estimate can be obtained by comparing their per- 
formance against that of the EAS-based rational 
approximations. 

Issues still open at present include selecting a- 
priori the parameter T in the EAS method in or- 
der to obtain a guaranteed level of suboptimal- 
ity and obtaining explicit expressions for the gap 
between actual 7-12 performance and the upper 
bound used in the LMI-based method. 
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