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Given a pair of images of the same scene from two uncal-
ibrated perspective views, the fundamental matrix F ∈ R3×3 is
defined as the rank-2 matrix satisfying the epipolar constraint

x′T Fx = 0, ∀x′,x

where the homogenous coordinates x,x′ ∈R3 are the correspond-
ing projections of a 3D point in the two images. Given the key
role that F plays in a large number of applications, the problem
of estimating it from experimental data has been the subject of a
large research effort. Existing techniques handle the non-convex
rank-2 constraint either by (i) using a two-step approach [2], that
starts by finding an unconstrained (sub)optimal estimate, and
then refining it by reducing its smallest singular value to 0, or
(ii) directly incorporating it into a non-convex optimization [1].
Although the above methods perform well in low noise scenar-
ios, performance degrades substantially in the presence of even a
few point mismatches. Alternatively, randomized methods (see
e.g. [5] and references therein) attempt to find outlier-free data
by repeatedly randomly selecting the minimal number of corre-
spondences needed to generate a solution, and selecting the best
one, according to some optimality criteria. These approaches are
attractive due to their simplicity and the availability of bounds on
the number of iterations required to guarantee a given probability
of success. However, these bounds grow very fast with the num-
ber of outliers. Secondly, since the bounds explicitly depend on
the number of outliers, this quantity must be known or estimated
accurately, since stopping the algorithm prematurely can lead to
arbitrarily bad solutions. Finally, these methods cannot directly
impose the rank deficiency constraint. Rather, this is done a pos-
teriori, by projecting the solution onto the manifold of rank-2
matrices. However, this step can lead to substantial performance
degradation [4].

Motivated by the challenges noted above, in this paper we
propose a single-step framework for robustly estimating the fun-
damental matrix from point correspondences corrupted by noise
and outliers. Specifically, we address the following problem:
P1: Given a set of n noisy point correspondences, {xi,x′i}, drawn
from two images of the same scene, and a-priori bound on the
fitting error |x′Ti Fxi| ≤ ε , find a matrix F such that (i) ||F||F = 1;
(ii) rank(F)=2; and (iii) The number of inliers is maximized.

The main idea of the paper is to introduce binary variables
si ∈ {0,1} that indicate whether a given correspondence is an
inlier, and to impose the rank-2 constraint by searching for the
epipoles, leading to the following polynomial optimization:

p∗ = min
q,F,si

n

∑
i=1

(1− si) subject to: (1)
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||F||2F = 1, Fq = 0,qT q = 1, (2a)

si|x′Ti Fx| ≤ siε, (2b)

s2
i = si,∀n

i=1 (2c)

Here (2c) forces si to be binary, and combined with (2b) enforces
that si = 0 for outliers. Thus, the objective function (1) is indeed
the number of outliers.

Our main result shows that the problem above can be ef-
ficiently solved by exploiting sparse polynomial optimization
techniques [3]. Specifically, the advantages of the proposed ap-
proach vis-à-vis existing techniques, illustrated in Fig. 1, include
the abilities to:

• Explicitly impose rank-deficiency and handle noise and
a very large percentage of outliers, without the need for
assuming bounds on the number of outliers.

• Exploit co-occurrence priors to improve the estimate.

• Handle partially known correspondences.
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Figure 1: Trace(FT Ftrue) as a function of the % of outliers
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